Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder

Thompson, J. P. and Clewett, T. G. and Fiske, M. L. (2013) Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder. Plant and Soil, 371 (1/2). pp. 117-137. ISSN 0032-079X

Abstract

Background and aims: Long-fallow disorder is expressed as exacerbated deficiencies of phosphorus (P) and/or zinc (Zn) in field crops growing after long periods of weed-free fallow. The hypothesis that arbuscular-mycorrhizal fungi (AMF) improve the P and Zn nutrition, and thereby biomass production and seed yield of linseed (Linum usitatissimum) was tested in a field experiment.
Methods: A factorial combination of treatments consisting of ± fumigation, ±AMF inoculation with Glomus spp., ±P and ±Zn fertilisers was used on a long-fallowed vertisol. The use of such methods allowed an absolute comparison of plants growing with and without AMF in the field for the first time in a soil disposed to long-fallow disorder. Results: Plant biomass, height, P and Zn concentrations and contents, boll number and final seed yield were (a) least in fumigated soil with negligible AMF colonisation of the roots, (b) low initially in long-fallow soil but increased with time as AMF colonisation of the roots developed, and (c) greatest in soil inoculated with AMF cultures. The results showed for the first time in the field that inflows of both P and Zn into linseed roots were highly dependent on %AMF-colonisation (R2 = 0.95 for P and 0.85 for Zn, P < 0.001) in a soil disposed to long-fallow disorder. Relative field mycorrhizal dependencies without and with P+Zn fertiliser were 85 % and 86 % for biomass and 68 % and 52 % for seed yield respectively.
Conclusions: This research showed in the field that AMF greatly improved the P and Zn nutrition, biomass production and seed yield of linseed growing in a soil disposed to long-fallow disorder. The level of mycorrhizal colonisation of plants suffering from long-fallow disorder can increase during the growing season resulting in improved plant growth and residual AMF inoculum in the soil, and thus it is important for growers to recognise the cause and not terminate a poor crop prematurely in order to sow another. Other positive management options to reduce long fallows and foster AMF include adoption of conservation tillage and opportunity cropping.


Statistics for USQ ePrint 25307
Statistics for this ePrint Item
Item Type: Article (Commonwealth Reporting Category C)
Refereed: Yes
Item Status: Live Archive
Additional Information: © 2013 Springer Science+Business Media Dordrecht. Published version deposited in accordance with the copyright policy of the publisher.
Faculty / Department / School: No Faculty
Date Deposited: 17 Jun 2014 02:51
Last Modified: 22 Mar 2017 06:41
Uncontrolled Keywords: Arbuscular mycorrhizal fungi; linseed (Linum usitatissimum); long-fallow disorder; plant P and Zn inflows; plant P and Zn nutrition; relative field mycorrhizal dependency; soil fumigation
Fields of Research : 07 Agricultural and Veterinary Sciences > 0703 Crop and Pasture Production > 070306 Crop and Pasture Nutrition
06 Biological Sciences > 0605 Microbiology > 060505 Mycology
07 Agricultural and Veterinary Sciences > 0703 Crop and Pasture Production > 070308 Crop and Pasture Protection (Pests, Diseases and Weeds)
Socio-Economic Objective: E Expanding Knowledge > 97 Expanding Knowledge > 970107 Expanding Knowledge in the Agricultural and Veterinary Sciences
Identification Number or DOI: 10.1007/s11104-013-1679-z
URI: http://eprints.usq.edu.au/id/eprint/25307

Actions (login required)

View Item Archive Repository Staff Only