Performance Evaluation and Improvement of Bankless Channel Surface Irrigation Systems

A dissertation submitted by
Michael Kevin Grabham

For the Award of
Doctor of Philosophy

2012
ABSTRACT

Bankless Channel Irrigation Systems (BCISs) are a surface irrigation system composed of adjacent, terraced bays with an interconnecting channel constructed such that the rim of the channel is level with the floor of each adjoining bay. The mode of irrigation is similar to Drain Back Level Basins (DBLBs) where the accumulated surface storage of each upstream bay is used to augment flow to a downstream bay. The systems of this study have been adapted from rice-based layouts to incorporate furrows for row-cropping. It is this style of BCIS that has generated considerable interest in Australia, particularly in the south east, where the system is used to grow a variety of crops and offers considerable labour and machine efficiency savings. Two defining features of BCISs are a positive field slope which rises from the bankless channel, and the hydraulic interaction between adjoining bays during the recession phase of the upstream bay and the advance phase in the downstream bay. These two features make evaluation challenging and mean no available hydraulic simulation model can simulate irrigation in these systems across an entire field.

To improve the irrigation performance of BCISs a method of evaluating current performance was required. Consequently, the objectives of this research were to firstly identify appropriate evaluation methods for evaluating BCISs, then use these methods to evaluate the performance of current systems. This understanding could then be used to identify appropriate hydraulic models for the purpose of identifying parameters which influence irrigation performance in BCISs.

In developing appropriate irrigation evaluation techniques for BCISs, a variety of evaluation methods were employed on a commercially operated BCIS in the Murrumbidgee Irrigation Area (MIA) of south eastern Australia. Field measurements were taken during a number of irrigations in the 2007/08 irrigation season from a central furrow in each bay of the three bay system. It was assumed that advance across the bay would
be uniform given the positive slope of each bay. Observed variation in the advance front between furrows within individual bays suggested advance was not uniform. Consequently, several furrows were instrumented in the subsequent irrigation season of 2008/2009. Evaluation results showed a significant difference ($p<0.05$) between trafficked (wheel) and non-trafficked (non-wheel) furrows for factors of furrow inflow rate, advance and furrow base elevation. On average, inflow rate into wheel furrows was 37% higher than into non-wheel furrows and wheel furrow base elevation averaged 17mm lower than non-wheel furrows, or 38% of the design furrow elevation. As a result of this variation between furrows, a considerable negative crop response was anticipated. However, while insufficient crop samples were collected to provide a statistically reliable analysis of within bay yield variation, field scale production yields were above the national production average suggesting any impact to be less than anticipated. It is assumed that post-irrigation lateral redistribution of profile moisture may mitigate variability, especially in the fields of this study where an equal ratio of wheel and non-wheel furrows existed.

In contrast to the measured variation within individual bays, application depths varied considerably between bays during each irrigation event. In one measured irrigation the highest application depth was 255% of the lowest applied depth. It was concluded, as a result of this substantial variation, that the greatest potential for improving irrigation performance in BCISs was in reducing the variability in applied depths between individual bays. To reduce variability, an understanding of the design and management features that affect application depth in BCISs was required. Consequently, the potential of various hydraulic simulation models was examined.

Despite a number of hydraulic models with capacity to simulate various aspects of BCISs none had capacity to describe irrigation at both the bay and field scales. Consequently, a simulation model was developed to describe both within-bay irrigation and the hydraulic interaction between bays; viz the B2B model. To achieve this, a surface irrigation hydraulic design model (Clemmens 2007a,b) was adapted to accommodate the
elements associated with a positive field slope. Parallel routines of this model where then coupled using a routine based adaptation of the Darcy-Weisbach equation to describe bay-to-bay hydraulics, thus enabling hydraulic simulation of an entire BCIS field.

B2B simulations were then used to demonstrate the capacity of the model and to test the sensitivity of BCISs to various design and management variables. Current assumptions within the B2B model limit the model to describing general trends in Distribution Uniformity (DU). This capacity provides an important tool to examine the effect design and management variables have on the performance of the system. Variables examined within this dissertation include bay dimensions, the vertical separation between bays, slope, field supply rate, delivery pipe capacity, irrigation deficits and duration.

The results showed DU down the furrow to be more sensitive to adjustments in bay length than width, with performance declining as completion of advance became reliant on field supply ‘base’ flow. As the vertical step between bays was increased, an increase in furrow inflow was apparent, commensurate with the increasing hydraulic head between the bays. However, despite the higher inflow, the impact on overall irrigation performance was relatively minor. The higher inflows generated a faster advance. However, the benefits of the higher discharge lasted for a shorter duration. This resulted in a reliance on the ‘base’ flow, similar to the above, for completion of advance which ultimately undermined the performance gains generated by the higher, but short duration inflows. Similar results were achieved for scenarios where pipe diameter, and thus capacity were increased.

B2B simulations of slope indicated that any increase in slope reduces DU in the field. Furthermore, as slope increases, the depth of flow at the furrow inlet increases to a point where waterlogging at the inlet end of the bay is apparent. However, the presence of some slope within the bay reduced the risk of internal drainage and also assisted in the management of irrigation water where topographical constraints limit the ‘step’ between bays. Where water ‘backs up’ into the upstream bay, the presence of a positive field slope assists in constraining water to the bankless channel.
Increasing the field deficit improved the simulated $[DU]$ for each bay. However, to satisfy the higher deficits irrigation duration was increased. For the infiltration characteristic used in these simulations, a prolonger irrigation interval was required resulting in the accumulation of a considerable surface storage volume, and thus depth, in each bay. While simulations were theoretical, it was concluded that consideration must be given to water depth when increasing irrigation deficits.

The B2B model provides a design simulation capacity providing a useful resource for describing trends in irrigation performance across a BCIS field. However, the model relies on reliable estimates of the infiltration characteristic of a field and does not simulate variation within individual bays. Consequently, evaluation of irrigation performance is required using field measurement. To effectively evaluate and determine suitable infiltration parameters for a field, this research identified several necessary field measurements as necessary: relative furrow elevation, furrow and bay inlet/outlet discharge, furrow advance and water depth at the furrow inlet. These measurements enable the infiltration characteristic for a field to be estimated and provide an insight into the uniformity of application between the bays of a field.
CERTIFICATE OF DISSERTATION

I certify that the ideas, designs, experimental work, software code, results, analyses and conclusions presented in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

______________________________ ________________________
Michael Kevin Grabham, Candidate Date

Endorsement:

______________________________ ________________________
Prof. Steven Raine, Principal Supervisor Date

______________________________ ________________________
Prof. Rod Smith, Associate Supervisor Date

______________________________ ________________________
Dr. John Hornbuckle, Industry Supervisor Date
ACKNOWLEDGEMENTS

The development of this dissertation is a tangible outcome of my PhD. As I look back over the years it has taken to bring this dissertation to fruition, I appreciate the intangible: the friendships, the conversations, the experiences, the liberty to explore and the change in perspective that this journey has delivered. I have a deep sense of gratitude to those that have helped me along the journey for their patience, endurance and forbearance.

Firstly, I thank my industry supervisor Dr John Hornbuckle and academic supervisors Professors Steven Raine and Rod Smith for their guidance through this journey. I am extremely grateful to you all for your encouragement and patience through this protracted campaign. I’m glad you agreed to take on the challenge of supervising me! A special thanks in particular to John for assisting with the nuts and bolts at the start and agreeing to host me at CSIRO, Griffith. My time at CSIRO opened a new chapter in my life and introduced me to a great group of people.

To all the CSIRO Land and Water team in Griffith–past and present–thanks for your friendship and hospitality. In particular, thanks to Leo and Spike for your assistance with equipment repair, field work and all things weather. To my great friends and office buddies, Nick and Bel, thanks for the good times, the humour and for sharing the tough times; and the introduction to \LaTeX, Nick. I also acknowledge, am in awe of and hugely respect one of the finest technicians I have had the privilege of meeting: Roy Zandona. Your passion for detail, skill, know-how and generosity are inspiring and greatly appreciated (so too are the pranks, the laughs and the wide ranging conversations!). I acknowledge and am thankful for the massive contribution of Richard Soppe. Your programming skills, coding magic, advice, guidance, flexibility, hospitality and willingness to assist, even at a personal cost, were an amazing gift. Thank you.

To Brett and Gary Polkinghorne and all the team at PHL Surveyors, I acknowledge and thank you for your assistance with the initial field survey work, data processing, equipment use and knowledge. To the entrepreneurial pioneers, Roger and Tim Commins, and to Ian Blight, I acknowledge and thank you for the provision of field sites and your contribution to this research. To Peter Gibbings at USQ and the late Troy Symes from NCEA for the loan of field equipment and instruction, I acknowledge your contributions. I acknowledge the assistance of Remy van de Ven from NSW DPI for all things statistical.
Thanks to my work colleagues in Griffith, Bathurst and beyond who have been patient and understanding of my endeavours.

The considerable financial assistance of the Cooperative Research Centre for Irrigation Futures is gratefully acknowledged. I expressly acknowledge the following partner organisations of the CRC: CSIRO Land and Water, Griffith, for in-kind contributions; NSW Department of Primary Industries for financial assistance and resources, and; the University of Southern Queensland for academic provisions and equipment.

To my friends, for your acceptance of my absence over the years I have been buried in study. I thank you for your continued friendship, love and support through this challenging experience. In particular, thanks to Di Jonnason for your encouragement. I’m glad that you succeeded in your studies and appreciated your encouragement to do the same.

I thank my extended family, both natural and spiritual, for your love support and understanding. You mean so much to me and I look forward to giving as I have received.

On a personal note, this little poem is to those most important in my life:

Ode to my loves

A PhD taught me many things, including a precious lesson,
That love and support of those around, is really what I depend on.
There’s always been one, who through this trip, has constantly picked-up pieces,
Each time the tunnel’s sun lit end, was a freight train: when progress ceases.
For words, deeds and reality checks, I owe my survival to Emm,
Who’s love and care supported me through PhD study mayhem.

The innocent cheer of three little kids, has helped me get through this time,
I’m glad of their love and cheek and joy; they turned dark days sublime.
My heavenly Father has given to me His love and ceaseless grace,
That anchored my ship though tumultuous days, helping me keep my faith.
I love you all and thank you for your help through this massive haul,
And look forward to sharing, and enjoying life, more fully with you all.

MG.
PUBLICATIONS FROM THIS RESEARCH

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Certificate of Dissertation</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
<tr>
<td>List of Publications</td>
<td>ix</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xx</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxviii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxx</td>
</tr>
<tr>
<td>Glossary</td>
<td>xxxiv</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xxxv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>
2.4.2 Zero-Inertia Model ... 30
2.4.3 Kinematic Wave Model ... 30
2.4.4 Volume Balance Model ... 31
2.4.5 Suitability of model approaches to basin irrigation systems ... 32

2.5 Level basin system design and evaluation ... 34

2.5.1 Design tables and manuals ... 34
2.5.2 Dimensionless approach ... 37

2.5.3 Performance indices ... 38

2.5.3.1 Application Efficiency ... 38
2.5.3.2 Distribution Uniformity ... 39
2.5.3.3 Indices for basin systems ... 39
2.5.4 Software for hydraulic analysis of basin irrigation ... 42

2.5.4.1 SIRMOD ... 42
2.5.4.2 WinSRFR ... 44
2.5.4.3 BASCAD ... 44
2.5.4.4 SISCO ... 45
2.5.4.5 Clemmens’ approach ... 45
2.5.4.6 B2D ... 46
2.5.4.7 CoBaSim ... 46

2.5.5 Determination of appropriate input parameters ... 47

2.5.6 Design and evaluation of level furrows in basin systems ... 48
2.5.7 Drain-back level basins .. 50
2.5.8 Summary ... 53
2.6 Optimisation of surface irrigation systems .. 54
2.7 Opportunities and challenges for BCIS improvement .. 55
 2.7.1 Introduction .. 55
 2.7.2 Positive bay slope ... 56
 2.7.3 Bay-to-bay hydraulic interaction .. 60
2.8 Conclusion ... 64
 2.8.1 Research needs ... 65

3 Field Sites and Evaluation Methodologies .. 66
 3.1 Introduction ... 66
 3.2 Field site description .. 67
 3.2.1 Field site identification 67
 3.2.2 Soil description .. 68
 3.2.3 In field soil variability 69
 3.2.4 Field characteristics 70
 3.2.5 Field Y3 .. 70
 3.2.6 Field W4 .. 74
 3.2.7 Elevation survey ... 75
 3.3 Evaluation methods ... 76
 3.3.1 Introduction ... 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Bay discharge measurements</td>
<td>77</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Furrow discharge measurements</td>
<td>79</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Surface storage volume</td>
<td>80</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Irrigation advance and recession</td>
<td>83</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Infiltration estimation</td>
<td>84</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Soil moisture deficits</td>
<td>85</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Plant biomass</td>
<td>85</td>
</tr>
</tbody>
</table>

4 Field Evaluation Results and Observations 86

4.1 Introduction 86

4.2 Irrigation performance 87

4.2.1 Variations in furrow irrigation performance within bays 87

4.2.1.1 Advance 88

4.2.1.2 Furrow elevation 90

4.2.1.3 Furrow discharge and advance 97

4.2.1.4 Effect on application depth 101

4.2.2 Variations in irrigation performance between bays 101

4.2.2.1 Application depths 102

4.2.2.2 Hydrographs 104

4.2.2.3 Crop response 108

4.3 Discussion 110

4.3.1 Improving irrigation performance 110
4.3.2 Potential to use representative sub-units for irrigation evaluation

4.3.3 Measurement considerations for irrigation evaluation

4.4 Conclusions

5 B2B Simulation Model–Model Description

5.1 Introduction

5.2 The method of Clemmens

5.2.1 Model objectives

5.2.2 Model fundamentals

5.2.3 Model process

5.3 B2B model development

5.3.1 Adapting the approach of Clemmens for Bankless Channel Irrigation Systems

5.3.1.1 Positive field slope

5.3.1.2 Variable bay inflow

5.3.2 Surface storage volumes during recession

5.3.3 Multiple bay hydraulic interconnection

5.3.3.1 The Darcy-Weisbach equation

5.4 Guide to the B2B simulation model

5.4.1 Model description

5.4.2 Model flowcharts

5.5 Assumptions and limitations
5.6 Conclusions .. 152

6 B2B Simulation Model–Capability ... 153

6.1 Introduction .. 153

6.2 Simulation model input parameter selection 154

6.2.1 Furrow parameters .. 154

6.2.2 Pipe parameters .. 155

6.2.2.1 Darcy friction factor ... 155

6.2.2.2 Entrance and outlet friction coefficients 156

6.2.3 Field parameters .. 156

6.2.4 Hydraulic parameters .. 159

6.2.5 Infiltration parameters ... 160

6.3 Model results .. 167

6.3.1 Bay simulation .. 167

6.3.2 Field simulation .. 172

6.3.2.1 Bay 1 .. 173

6.3.2.2 Bay 2 .. 174

6.3.2.3 Bay 3 .. 179

6.4 Discussion .. 180

7 B2B Simulation Model–Demonstration of Potential Applications 182

7.1 Introduction ... 182
Appendix E Biomass statistical analysis 315

Appendix F Electronic Data 317
List of Figures

1.1 Plan and cross section views of a BCIS showing flows during irrigation of the third bay in a series of four bays. Cross-section (a) shows the terraced bays with regards to the natural slope, while cross-section (b) shows a longitudinal section of the bay. .. 6

1.2 Structure of the dissertation showing the two themes of evaluation and design and management. ... 8

2.1 Cotton picker turning in the below-field-grade delivery channel of a BCIS. 14

2.2 Advance and recession lines for a sloping furrow system (a), a level basin system (b) and a DBLB (c). Opportunity time (t_n) is the difference between advance time to the end of the furrow (t_a) and recession time at the end of the furrow (t_r). Although hypothetical, parallel advance and recession lines would be required for a perfectly uniform irrigation event. (Adapted from Dedrick et al. (1982)) .. 17

2.3 Water depth triggered mechanism for the release of water from a bay. Photograph: Graham Harris. .. 18

2.4 Infiltrated depth (z) during a single irrigation (a) and accumulated total deep percolation (P_t) from four irrigations (b) against surface elevation deviation from the mean (S). (Hunsaker et al., 1991) 21

2.5 DU for individual furrows of various elevations, and thus various inflow rates, for conditions observed on the experimental station near Coruche, Portugal (de Sousa et al., 1995). .. 23
2.6 Influence of standard deviation of mean elevation on basin scale for the conditions near Coruche, Portugal (de Sousa et al., 1995).

2.7 Energy dissipation may be required to prevent erosion. Photograph from Dedrick et al., 1982 p. 132.

2.8 Wide inter-bay irrigation control structure near St George, Queensland, Australia. Typical flow rate of approximately 200 ML/d.

2.9 Infiltrated water profiles for: a. Overirrigation through the bay; b. adequate irrigation with no excess; and, c. inadequate application to part of the bay. \(z_n \) is the minimum infiltrated depth and \(z_g \) the average infiltrated depth (from Clemmens et al., 1981).

2.10 Results from García-Navarro et al. (2004) showing observed versus simulated location of advancing front in individual furrows at times 6, 14 and 23 minutes after the commencement of irrigation.

2.11 Volume drained versus furrow stored volume at the time of cut-off. (Source: Dedrick and Clemmens 1988).

2.12 Infiltrated depth profile for three furrows of differing length. Furrow 1 is a 120 m long furrow with a mean net infiltrated depth of 48 mm. Furrow 2 is a 240 m long furrow with a mean net infiltrated depth of 84 mm and Furrow 3 is a 354 m long furrow with a mean net infiltrated depth of 105 mm. DU for furrows 1, 2 and 3 was 72%, 64% and 62% respectively. (Source: Dedrick and Clemmens 1988).

2.13 Infiltrated depth profile resulting from three irrigation events of a 240 m long furrow where: 1 is irrigation of a “dry” furrow (as per 2 in Figure 2.12); 2 for an irrigation event two days after Irrigation 1, and 3 is an irrigation event 12 days after Irrigation 1. (Source: Dedrick and Clemmens 1988).

2.14 The effect of Application Efficiency (\(AE \)) improvement on net benefit from several furrows. Adapted from Clyma and Reddy (2000).

2.15 Surface storage and infiltrated volumes for (a) sloping and (b) BCISs showing the effect on \(V_y \) as a proportion of \(V \).
2.16 Suggested level basin design elements for hydraulic isolation of individual

3.1 Location of fields selected for instrumentation. 67

3.2 Fields selected for instrumentation. Field Y3 was instrumented for the
irrigation season of 2007/08, and Field W4 was instrumented for the
irrigation season of 2008/09. Source: Google maps. 68

3.3 EC_a spatial variability in Fields Y1, Y2 and Y3 near Whitton. Dashed line
indicates bays selected for instrumentation and evaluation. 71

3.4 EC_a spatial variability in Field W4 near Whitton. Dashed line indicates bays
selected for instrumentation and evaluation. .. 72

3.5 Mean EC_a with σ for surveyed bays near Whitton. 72

3.6 Schematic of Field Y3. .. 73

3.7 Cotton on 1.81 m beds 12 weeks after planting. 73

3.8 Schematic of Field W4. .. 74

3.9 Aerial view of the three bays making up Field W4. Irrigation supply-flow is
from left to right. ... 75

3.10 Schematic of MACE sensor mounting frame. 77

3.11 MACE sensor mounting frame inserted in pipe. 78

3.12 SonTek FlowTracker velocity meter used to determine furrow flow velocity
and hence discharge. ... 80

3.13 A water depth probe in the furrow. .. 82

4.1 Spatial representation of advance within Bay 2 of Field Y3 during an
irrigation event on the 10th December 2007. Times and advance lines
are represented as approximations only due to a 10-15 minute collection
interval. Dashed lines indicate advance at the previous time interval. 89
4.2 Advance curves for every fifth furrow in Field Bay 2 of Field Y3 during an
irrigation event on the 10th December 2007.

4.3 Furrow profiles for Bays 1, 2 and 3 of Field Y3. The design slope of 1:10000
is shown by the black line at the base of the figure.

4.4 Furrow profiles for Bays 1, 2 and 3 of Field W4. The design slope of
1:10000 is shown by the black line at the base of the figure.

4.5 Difference between design and measured elevation for Field Y3.

4.6 Difference between design and measured elevation for Field W4.

4.7 All furrow average, wheel furrow average and non-wheel furrow average
elevation for surveyed furrows in Bays 1 and 2 of Field W4 showing the
elevation of non-wheel furrows is higher than that of wheel furrows in all
bays.

4.8 Inlet elevation of all furrows in each bay of Field W4. Design elevation
for each bay is represented by the black line. Furrows from which field
measurements were collected are shown as green furrows with the
identifying furrow number. Furrow 11 in Bay 1 and 62 in Bay 2 are wheel
furrows, whilst Furrow 17 in Bay 3 is a non-wheel furrow.

4.9 Furrow discharge recorded during an irrigation event of Bay 2 in Field
W4 on the 11th of January 2009. Discharge during the recession phase
is negative discharge, ie discharge from the furrow.

4.10 Furrow depth and velocity recorded during an irrigation event of Bay 2 in
Field W4 on the 11th of January 2009.

4.11 Irrigation advance in Bay 2 of Field Y3 during an irrigation event on the 10th
December 2007 showing advance curves for both wheel and non-wheel
furrows.

4.12 Irrigation advance in selected furrows of Bays 1, 2 and 3 of Field W4 during
an irrigation event on the 17th February 2009.

4.13 The depth applied to each bay for several irrigation events of Fields Y3 and
W4.
6.1 Wingwall culvert as used in the bankless channel culverts of this study. Photograph courtesy of PCW, Wangaratta. ... 156

6.2 An interconnecting pipe outlet showing the sudden expansion conditions typical of outlets encountered in BCISs. ... 157

6.3 Simulated and measured discharge hydrographs at the Bay 2 inlet. 158

6.4 Furrow water depth at several intervals along a furrow in Bay 1 of Field W4 during an irrigation event on the 19th of February 2009. The black dashed line indicates the B2B simulated curve, whilst the green dashed line indicates the possible trajectory for the estimation of winSRFR and SISCO draw-down times. ... 161

6.5 Infiltration curves for parameters described in Table 6.1. SISCO derived infiltration curves (denoted by an ‘S’) only describe the advance phase of each irrigation event, hence the variable termination of each curve. Individual furrows are identified by colour with the various model runs for each furrow represented by the hue of each colour. ... 165

6.6 Field measurement derived and simulated furrow discharge hydrographs for a representative furrow of Bay 1 during an irrigation event of Field W4 on the 19 February 2009. ... 168

6.7 Performance indices and applied depth as derived from the three simulation models and field measurements. ... 169

6.8 B2B simulated and field measured advance for an irrigation event of Field W4 on the 19th of February 2009. Simulated recession is also shown for each of the bays. ... 176

6.9 B2B simulated and field measured furrow depth, as determined at the furrow inlet, for an irrigation event of Field W4 on the 19th of February 2009. ... 177

6.10 B2B simulated and field measured hydrographs into Bays 1, 2 and 3 for an irrigation event of Field W4 on the 19th of February 2009. ... 178
7.1 Advance, recession and infiltration in Bays 1, 2 and 3 for an irrigation event of Field W4 on the 19th of February 2009. 188

7.2 B2B simulated infiltrated profiles for a five bay BCIS with field lengths of 364, 455 (Reference Scenario) and 546 metres. 189

7.3 B2B simulated infiltrated depths for three bay width scenarios. The target depth is 50 mm in all scenarios 193

7.4 B2B simulated advance in Bay 3 for various scenarios of bay step height. 195

7.5 B2B simulated infiltration profiles for various scenarios of slope. 197

7.6 B2B simulated infiltrated depths for three scenarios of discharge, viz 51, 56 and 61 L/s/ha. ... 199

7.7 B2B simulated infiltrated depths for scenarios with varying interconnecting pipe sizes. Scenario 3 is the Reference Scenario and is repeated for to enable comparison with both smaller and larger pipes. 202

7.8 B2B simulated infiltration profiles for various irrigation deficit scenarios. 205

7.9 B2B simulated furrow flow depth for deficit scenarios 207

8.1 The volume of water applied to each bay for several irrigation events of Fields Y3 and W4. ... 214

8.2 Depth profiles for probes in Furrow 11 of Bay 1. The depth profile of the probe at 0 m rises again as water ‘backs up’ from the downstream bay. The effect is evident at the inlet probe only. 219

8.3 Three exaggerated field slope conditions demonstrating that for a corresponding advance distance, changing field slope impacts on V_y. As field slope becomes flatter, the volume of V_y declines. 221

8.4 Inter-bay structure used in a BCIS near Thallon, Queensland. 228

8.5 A ‘double-stop’ structure used between bays in the MIA of New South Wales (NSW). Photograph: Graham Harris. 228
8.6 A Padman R7 stop used between bays in the MIA of NSW. Photograph: David Williams.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relationship between flow rate and basin area for several soil types</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>Approximate values for maximum basin widths</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>Hydraulic models and their properties</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>Gross, drain-back and net volumes for two irrigations of a DBLB system in Arizona</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Error from design elevation and standard error within each of the bays of Fields Y3 and W4</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Independent t-test statistics for $\alpha \leq 0.05$ for wheel and non-wheel furrow inlet elevations in bays of Field W4. Wheel track furrows in all bays are significantly lower than non-wheel furrows. \overline{x}_{A-B} is the average difference between the two furrow types</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Percentage variation from field deficit for bays 1, 2 and 3 of Fields Y3 and W4 for several irrigation events</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Infiltration parameters generated from SISCO calibrated field data, and for clay soils from various locations across the MIA</td>
<td>164</td>
</tr>
<tr>
<td>6.2</td>
<td>Input parameters for B2B, winSRFR and SISCO model simulations. Data is derived from field measurements collected during an irrigation event of Field W4 on the 19th of February 2009</td>
<td>166</td>
</tr>
</tbody>
</table>
6.3 Inflow, outflow, infiltrated volume and the respective errors from the field measured values as simulated by winSRFR, SISCO and the B2B model. Values presented are for an individual furrow within Bay 1.

7.1 Generic input parameters for all simulations.

7.2 B2B simulated \(DU \) for individual bays for bay length scenarios of 364, 455 and 546 metres. Percentage data range in \(DU \) between scenarios is also shown for each bay. Field Average \(DU \) is weighted for the number of furrows in each bay.

7.3 Bay size ratios for B2B simulation scenarios.

7.4 \(DU \) for individual bays and the entire field for four B2B simulation scenarios. Field Average \(DU \) is weighted for the number of furrows in each bay.

7.5 \(DU \) for individual bays and the entire field for four B2B simulation scenarios for various slopes. Field Average \(DU \) is weighted for the number of furrows in each bay.

7.6 B2B discharge simulation scenarios showing the field supply discharge and the base flow discharge for furrows within the respective bays of the generic field described by the parameters of Table 7.1.

7.7 \(DU \) for each bay of a five bay system for four irrigation discharge scenarios, viz. Reference, +10%, +20% and +30%. Percentage data range in \(DU \) is also provided, showing the potential benefit of increasing discharge. Field Average \(DU \) is weighted for the number of furrows in each bay.

7.8 Pipe size scenarios for a five bay BCIS.

7.9 \(DU \) for each bay of a five bay system for each of the pipe size scenarios. Field Average \(DU \) is weighted for the number of furrows in each bay.

7.10 B2B simulated \(DU \) for five deficit scenarios. Field Average \(DU \) is weighted for the number of furrows in each bay.

8.1 Range of application depths across several fields.
Nomenclature

- α_1: Unit conversion coefficient
- a: Empirical Kostiakov infiltration parameter
- α_2: Labour use fraction
- A: Cross-sectional area of flow, m2
- α_3: Unit conversion coefficient
- A_f: Furrow water-surface area, m2
- A_p: Pipe cross-sectional area of flow, m2
- α_5: Unit conversion coefficient
- \bar{A}: Average cross-sectional area, m2
- C: Crack fill volume term, m3/m
- C_1: Cost of water
- C_2: Cost of labour
- C_3: Cost of construction
- C_4: Cost of runoff
- C_5: Cost of deep drainage
- C_p: Cost of production
- ΔH: Head difference, m
- ΔH_b: Base flow head difference, m
- D: Pipe Diameter, m
D_c Conveyance depth

D_i Irrigating depth

d Day

ϵ Error value OR Absolute pipe roughness, mm

f Darcy friction factor, dimensionless

f_0 Semi-empirical steady state infiltration parameter, m3/m/min

f_b Free board

Fr Froude number

g Acceleration due to gravity, m/s/s

g Grams

h Advance exponent

h_e Pipe entrance friction loss, m

H_f Pipe friction loss, m

h_o Pipe outlet friction loss, m

h Hours

i Infiltration rate

k Empirical Kostiakov infiltration parameter, m3/m/mini

K_c Crop Coefficient

k_e Pipe inlet friction coefficient

k_o Pipe outlet friction coefficient

L Field length, m

l Pipe length, m

μ Viscosity, Nsm$^{-2}$ or kg(ms)$^{-1}$

m Metres

min Minutes
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>Mega litres</td>
</tr>
<tr>
<td>n</td>
<td>Manning resistance coefficient</td>
</tr>
<tr>
<td>N_f</td>
<td>Number of furrows</td>
</tr>
<tr>
<td>N_i</td>
<td>Number of irrigations per season</td>
</tr>
<tr>
<td>N_l</td>
<td>Number of run lengths</td>
</tr>
<tr>
<td>N_w</td>
<td>Number of sets in width direction</td>
</tr>
<tr>
<td>P_c</td>
<td>Profit coefficient</td>
</tr>
<tr>
<td>P_n</td>
<td>Net return on investment</td>
</tr>
<tr>
<td>Q</td>
<td>Furrow discharge, l/s</td>
</tr>
<tr>
<td>q_0</td>
<td>Inflow rate per unit width, m3/s</td>
</tr>
<tr>
<td>Q_b</td>
<td>Field base supply rate, ML/d</td>
</tr>
<tr>
<td>Q_r</td>
<td>Recession or runoff discharge, ML/d</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number, dimensionless</td>
</tr>
<tr>
<td>ρ_1</td>
<td>Empirical data fitting parameter</td>
</tr>
<tr>
<td>ρ_2</td>
<td>Empirical data fitting parameter</td>
</tr>
<tr>
<td>R</td>
<td>Hydraulic Radius, m</td>
</tr>
<tr>
<td>r^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>σ_1</td>
<td>Empirical data fitting parameter</td>
</tr>
<tr>
<td>σ_2</td>
<td>Empirical data fitting parameter</td>
</tr>
<tr>
<td>σ_y</td>
<td>Surface water profile shape factor</td>
</tr>
<tr>
<td>S_0</td>
<td>Field slope</td>
</tr>
<tr>
<td>S_f</td>
<td>Friction slope</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>τ</td>
<td>Infiltration opportunity time, min</td>
</tr>
</tbody>
</table>
τ_B Kostiakov branch function time of branch, min

t Elapsed time from start of irrigation, min or sec

t$_{co}$ Time to cut-off, min or sec

V Total volume applied = Q_0t, m^3

v Flow velocity, m/s

V_r Runoff volume, m^3

V_y Surface storage volume, m^3

V_z Infiltrated volume, m^3

V_{dp} Deep drainage volume

W Furrow spacing, m

W_b Furrow base width, m

W_f Field width, m

W_s Furrow side slope, m/m

W_t Furrow surface water width, m

WP Wetted perimeter, m

\bar{x} Half field wetted length, m

x Distance from furrow inlet, m

x_r Distance from furrow inlet during recession, m

y Flow depth, m

Y_R Relative crop yield

z Infiltrated volume

Z_b Furrow side slope, m/m

z_d Required depth of infiltration or soil moisture deficit, m

z_g Average depth of infiltration or soil moisture deficit, m

z_n Minimum infiltrated depth, m

Z_s Vertical step between bays, m
Glossary

Bioturbation Mixing of soils by living organisms. pg: 92

Broadacre Land suitable for large-scale cropping operations. pg: 3, 4

Distribution Uniformity The ratio of the average of the lowest quarter of measurements of infiltrated depth to the average depth of irrigation water infiltrated, expressed as a percentage (USDA NRCS, 1997). pg: 119

Guess row The intervening row, hill or bed formed by the outside edge of a bed forming implement on two separate passes. pg: 81, 84

Land forming Laser controlled grading of the land to a uniform plane. pg: 24, 68, 69, 75

Microtopography Topographical patterns embedded into the general zero-slope levelling of a field, (Playán et al., 1996b, p. 339). pg: 46, 64

Rotobucks The area between the supply channel and furrows when pulled up into hills for the purpose of delivering water from a siphon to one or more furrows. This area must be levelled to enable machinery to turn at the head of the field and re-constructed before an irrigation event. pg: 4, 13

Tailwater Flow of surface water from a given area resulting from the effects of applied irrigation water in excess of crop water requirement. pg: 76

Top soiling The application of top soil to a soil profile. Top soil may have been removed for adjustment to field slope before being re-applied or may be sourced from another area. pg: 69

Wheel row A furrow trafficked by a wheel during field operations. pg: 84
Acronyms

AE Application Efficiency. pg: xxi, 10, 15, 24, 28, 36, 38, 39, 51, 54, 55, 76, 118, 172, 180, 229

EC_a Apparent Electrical Conductivity. pg: 69, 70

ET_c Crop Evapotranspiration. pg: 85

ET_o Reference Evapotranspiration. pg: 85

E_i Irrigation Efficiency. pg: 224

IOT Infiltration Opportunity Time. pg: 15, 19, 25, 32, 120, 121, 136, 137, 184, 185, 230

PAE Potential Application Efficiency. pg: 40, 121

ADV Acoustic Doppler Velocimeter. pg: 226

AHD Australian Height Datum. pg: 75

DBLB Drain Back Level Basin. pg: i, xx, xxviii, 5, 13, 15, 17, 19, 24, 25, 50, 51, 53, 61, 62, 64, 218–220, 224

dGPS Differential Global Positioning System. pg: 69, 83