Alleviating Design Silence in Design Science Research: a Proposal of a Design Method

Francis Gacenga, Aileen Cater-Steel, Mark Toleman and Wui-Gee Tan
University of Southern Queensland, Toowoomba, Australia
Gacenga@usq.edu.au
Aileen.Cater-Steel@usq.edu.au
Mark.Toleman@usq.edu.au
Wui-Gee.Tan@usq.edu.au

Abstract: Information Systems (IS) design science literature offers a plethora of findings on various aspects, such as the general steps in design science, problem identification, objectives of solutions, and evaluation of the artefacts. However, there appears to be a dearth of guidance on the design of the artefact itself. Information Technology Service Management (ITSM) practitioners report challenges in measuring and reporting the performance of ITSM. This area is identified as significant and lacking in research. We are developing a framework that can be used for performance measurement of ITSM investments in organisations. The ITSM performance measurement framework (PMF) will provide a basis of standardisation and performance comparison for organisations implementing ITSM. The focus of this paper is the design methodology for the PMF framework. Our work considers literature from IS design science as well as disciplines outside IS design. Previous IS researchers developed frameworks that guide the IS design research process but do not provide details of the design process. We extend their work by narrowing the focus on the design step found in IS design science approaches giving a detailed treatment of the design step and delve further into design literature outside IS design science. Design is, of course, a very creative endeavour and may not be solely process driven. Few articles in IS design science address in detail or give any guidance on design per se. Using a design process from outside IS design science advocating ‘designerly ways of knowing’ we apply the integrative Matching Analysis Projection Synthesis approach. We integrate an IS design science research framework with a macro cycle of analysis-projection-synthesis and a micro cycle of research-analysis-synthesis-realisation to create an approach for designing the PMF. Steps for evaluation and communication are also described. The design process proposed may be useful for other IS researchers seeking guidance on how to design the artefact in an IS design science project.

Keywords: design science research, IT service management, performance measurement framework, mixed methods research, matching analysis projection synthesis approach

1. Introduction

In a research project to develop a performance measurement framework (PMF) for IT service management (ITSM) we employ a multi-paradigmatic and multi-method approach that includes design science research (DSR). Our review of Information Systems (IS) design science literature did not uncover specific advice on the design step that is required in most DSR frameworks. The objective of this paper is to highlight the silence on design in DSR and to propose a design approach for our particular project. As well as being the research project that motivated the need to identify more concrete and detailed guidance for the design step in DSR, the ITSM PMF serves as an example application of DSR and the design approach proposed.

ITSM is a customer-oriented approach used by IT practitioners to manage IT operations organised around IT services. ITIL® is the most widely used ITSM framework and is based on a library of books that offer “best practices” for ITSM. ITIL is a lifecycle-based, process-oriented framework that organizations can use to create, design, deliver and maintain customer-focused IT services.

This project addresses an area that has been identified as significant and lacking in research. ITSM practitioners report challenges in measuring and reporting the performance of ITSM. We are developing a framework that can be used for performance measurement of ITSM investments in organizations. The framework will provide a basis of standardization and performance comparison for organizations implementing ITSM and could be used to show a relationship between ITSM investment and benefits from this investment. Our project develops a PMF for ITSM, an IT service management tool. The research contributes to IS design theory by describing the “design decisions and design knowledge that are intended to be manifested or encapsulated in an artifact, method, process or system” (Gregor 2002). The research contributes to the existing ITSM body of knowledge by addressing the gap that currently exists in ITSM performance measurement (Lahtela et al. 2010), performance measures and methods.
The focus of this paper is on the design methodology for the ITSM PMF. The project uses a multi-paradigmatic and mixed-methods approach based on behavioural science and design science paradigms. The mixed-methods approach is suitable to the project as it addresses the theoretical challenge using science and, based on the empirical knowledge gained, develops a practical solution using design science.

We use the Information Systems Design Research (ISDR) approach as proposed in Peffers et al. (2008) as a foundation. An overview of the design research process model and behavioural science research methods are shown in Figure 1.

Figure 1: Initial design science method process model (Based on Peffers et al. 2008)

In stage one we begin with a systematic literature review followed by a survey. In stage two we conduct case studies and develop the ITSM PMF artefact. In stage three we evaluate the prototype PMF and enhance it through further design and development.

The paper is structured as follows. First the IS design science literature is reviewed. The gap in the literature is explained, followed by our proposal to overcome the gap/limitations. We describe how the proposed design approach is implemented, evaluated and communicated. Finally, a summary and implications are provided in the conclusion.

2. Review of IS design science literature

According to Hevner et al.'s (2004) article, "design science creates and evaluates IT artefacts intended to solve identified organizational problems". The study by Gregor and Jones describes design science as a sub-strand of a collection of constructive research approaches with a common emphasis of the central role of the artefact (2007). Peffers et al. (2008) prescribe six processes for design science: identify problem, define objectives of a solution, design and development, demonstration, evaluation, and communication. A case for leveraging design theory to improve the transparency and rigor of design research is demonstrated by Pirinen and Briggs (2011) who integrate the framework in Hevner et al. (2004) and Peffers et al. (2008) as well as the design theory in Walls et al. (1992) with that offered in Gregor and Jones (2007). Patas and Goeken's article suggests interplay between behavioural and design-oriented research can be improved and draws a distinction between empirical and theoretical knowledge as well as non-artefact-centric and artefact-centric knowledge (2011).

A review of the IS design literature provides guidance on how to organize IS design research. We found that literature was available on design science research steps (Carlsson 2006; Hevner and Chatterjee 2010; Hevner et al. 2004; March and Smith 1995, Offermann et al. 2009; Peffers et al. 2008; Pirinen et al. 2010), problem identification (Wieringa 2010), objectives of a solution (Carlsson 2007), evaluation (Cleven et al. 2009, Pries-Hje et al. 2008), project management (vom Brocke and Lippe 2010) as well as evaluations of studies using design science (Samuel-Ojo et al. 2010). Design science studies providing the actual specifics of the design step are summarized in Table 1 which
extends Peffers et al. (2008) and Offermann et al. (2009). In a number of design science studies the design and build steps are not clearly demarcated.

Table 1: Design step in the is design science literature

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Design & Development Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cole, Purao, Rossi & Sein (2005)</td>
<td>Build (model, instantiate)</td>
</tr>
<tr>
<td>Hevner, March, Park & Ram (2004)</td>
<td>Iterative search process, artefact</td>
</tr>
<tr>
<td>March & Smith (1995)</td>
<td>Build</td>
</tr>
<tr>
<td>Nunamaker, Chen & Purdin (1990-1)</td>
<td>Understand the studied domain, application of relevant scientific and technical knowledge, creation of alternatives, and synthesis and evaluation of proposed alternative solutions</td>
</tr>
<tr>
<td>Takeda, Veerkamp, Tomiyama & Yoshikawa (1990)</td>
<td>Suggestion, development</td>
</tr>
<tr>
<td>Vaishnavi & Keuchler (2008; Vaishnavi and Kuechler 2009)</td>
<td>Suggestion, development</td>
</tr>
<tr>
<td>Walls, Widmeyer & El Sawy (1992)</td>
<td>Design method, meta design</td>
</tr>
<tr>
<td>Offermann, Levina, Schonherr & Bub (2009)</td>
<td>Design artefact, literature research</td>
</tr>
<tr>
<td>Peffers, Tuunan, Rothenberger, & Chatterjee (2008)</td>
<td>Design and development</td>
</tr>
<tr>
<td>Sein, Henfridson, Purao, Rossi & Lindgren (2011)</td>
<td>Building, intervention and evaluation</td>
</tr>
</tbody>
</table>

We considered the approaches summarized in Table 1 for the design step of our project but each lacks detailed guidance. The build step offered in Cole et al. (2005) includes the steps “model and instantiate” and advocates using software engineering principles such as effective tools and reuse.

Advice on the design step offered in Hevner et al. proposes an iterative search process that would result in the artefact. The article concedes that “given the wicked nature of many IS design problems it may not be possible to determine the relevant means, ends or laws” and suggest that a way out, “is to search for satisfactory solutions” (2004).

Emphasis on building the artefact is highlighted in March and Smith, though the article does not provide details on what “build” entails. The article states that “build refers to the construction of the artefact, demonstrating that such an artefact can be constructed” (1995).

Advice on systems design in Nunamaker and Chen (1990) states that “design involves the understanding of the studied domain, the application of relevant scientific and technical knowledge, the creation of various alternatives, and the synthesis and evaluation of proposed alternative solutions”. They did not give details on how to apply relevant scientific and technical knowledge in creating the alternatives or how to synthesize them.

The process model in Peffers et al. (2008) is synthesized from process elements found in seven studies taken from IS and other disciplines. In the model, design and development “includes determining the artefact’s desired functionality and its architecture and then creating the actual artefact” (Peffers et al. 2008). The article further suggests that moving from objectives to design and development requires “knowledge of theory that can be brought to bear in a solution” but does not explain how this can be done.

A computer design process model for CAD systems in Takeda et al. (1990) presents a descriptive model, a cognitive model and a computable model. The cognitive model proposes a five-step cycle that includes “suggestion” and “development”. Suggestion entails generating “key concepts that solve the problem” and development “to construct candidates for the problem from the key concepts using various types of design knowledge” (Takeda et al. 1990). The article further identifies object and action levels as distinct levels in the designer’s mental activity. The approach was adopted in Vaishnavi and Keuchler (2009) and we also find it useful as a conceptual guide though it does not address the practical design issues we faced.

An elaboration on IS design theory such as the systems development lifecycle (SDLC) with emphasis on building and testing IS theories is provided by Walls et al. (1992). Their design science research framework proposes design method and meta design in the design stage. However, it lacks detail on how to conduct these steps.
Based on the work in Peffers et al. (2008) a three-process framework entailing problem identification, solution design and evaluation is proposed in Offermann et al. (2009). The article considers Matching Analysis Projection Synthesis (MAPS) but concludes that "for IS design science, it seems that methodology hasn’t advanced as far as to propose different methods for each process step" (2009). The article then proposes, in its IS design research framework, a design step split into artefact design and literature search. Details are not provided on how to perform the artefact design.

Our work, like that in Peffers et al. (2008) and Offerman et al. (2009) considers literature from IS design science as well as outside IS design. The approaches in Peffers et al. and Offerman et al. develop frameworks that guide the IS design research process and do not delve into the details of the design process. The action design research method proposed in Sein et al. (2011) based on action research advocates evaluation performed "in authentic settings" using the design steps of building, intervention and evaluation. The article describes building the artifact and does not distinguish this from design.

To summarize, IS design science literature delivers a rigorous and systematic process on the general IS design research approach but offers little guidance on the design and development step at the heart of creation of the artefact. Design is a creative endeavour and may not be solely process driven. Few articles in IS design science describe the design step in detail or give much guidance on design per se perhaps because design needs much 'right brain' as well as 'left brain' activity (Tovey 1984) and tends to be context specific. However there are design principles that have been espoused over the years.

3. Design gap in IS design science

Design is defined as "a goal-directed thinking process by which problems are analysed, objectives are defined and adjusted, proposals for solutions analysed, objectives are developed and the quality of those solutions is assessed" (Roozenburg and Eekels 1995). The gap in IS design science is identified by Offermann et al. who state, "artefact design is a creative engineering process. Not much guidance is provided in IS literature" (2009). The gap is described as the "lack of design foundations in the axiomatic statements of the formal sciences or the empirical approaches of the natural sciences nor the hermeneutic techniques of the humanities" (Jonas 2007). The subject and object of design science is design and using the definition of Roozenburg and Eekels, design is "to conceive the idea for some artefact or system and/or to express the idea in an embodiable form" (1995).

Design science lays emphasis on systematic, testable and communicable methods. However it is instructive to reflect on the differences between design science and the science of design and engineering as highlighted in Cross (2002). In our reflections we grappled with the question of whether design needs to be scientific and whether design science advocates that design is scientific. These questions are captured by Cross (2002) who observed "a desire to 'scientise' design can be traced back to the 20th-Century Modern Movement in design". There were aspirations to produce works of art and design based on scientific methods of objectivity and rationality. These aspirations to scientise design surfaced strongly again in the 'design methods movement' of the 1960s.

We heed the advice in Osterle et al. on the design step, that "artefacts should be created through generally accepted methods, be justified as much as possible and be contrasted with solutions already known in science and business" (2010).

4. Our approach to the design problem

Designer-researchers are viewed as a possible solution to the design problem (Cross 2002). Designer researchers combine scientific methods with "designerly ways of knowing" (Cross 1982). The article identifies five aspects of designerly ways of knowing: "Designers tackle ill-defined problems. Their mode of problem-solving is solution-focused. Their mode of thinking is 'constructive'. They use 'codes' that translate abstract requirements into concrete objects. They use these codes to 'read' and 'write' in 'object languages" (Cross 1982).

We reviewed literature on the design step outside IS design science (Archer 1984; Chow and Jonas 2008; Cross 2002; Eekels and Roozenburg 1991; Roozenburg and Eekels 1995) and identified detailed design processes that would be useful for IS design science. There is a large body of design literature and we refer to the works by Bayazit (2004) and Cross (1993) for a summary review of forty
years of design research which describe research from the early roots: De Stijil, the Bauhaus; to first
generation design methods: Horst Rittel, Morris Asimov, L. Bruce Archer, Christopher Alexander on
patterns, and Herbert A Simon; to second generation design methods; and finally to scientific
research in design.

According to the research in Chow and Jonas (2008), after the first generation methods were
rejected, the postmodernist attitude of no methods was followed by strong adoption of scientific
methods for design research. The article argues that the current situation regarding methodology in
design research is characterized by unproductive dualisms and proposes a generic process model,
Matching Analysis Projection Synthesis (MAPS). We also considered an alternative design cycle and
process proposed in Archer (1984) and a similar one in Roozenburg and Eekels (1995) which entails
analysis, synthesis, simulation, and evaluation conducted in iterations of specification, design,
properties and comparison. We opted to adopt MAPS as the design guide for the design step in our
project as MAPS is similar to the concepts of 'the true', 'the ideal' and 'the real' matching realism
which is the underlying philosophy of the project. MAPS also presents an integrative design research
medium as well as flexibility.

5. Designing a performance measurement framework for ITSM

In Table 2 we outline how we conducted the ITSM PMF project by applying behavioural science
methods with an IS design science framework that integrates 'designerly ways of knowing' in the
design step. This fusion of science and design is achieved in three stages and we outline the
objective, method, paradigm, parent discipline, philosophy, data analysis, purpose, study phenomena,
outcomes and contributions.

Table 2: Fusion of science and design

<table>
<thead>
<tr>
<th>Research/Design</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Problem identification and definition of objectives of a solution</td>
<td>Understand the domain of ITSM performance measurement</td>
<td>Evaluation of prototype PMF</td>
</tr>
<tr>
<td>Determine ITSM benefits and performance metrics</td>
<td>Design ITSM PMF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Systematic literature review</td>
<td>Case studies, cross case analysis</td>
<td>ISDR (Peppers et al. 2008) and MAPS synthesis and realization (Chow and Jonas 2008; Jonas 2007)</td>
</tr>
<tr>
<td>Paradigm</td>
<td>Behavioural science</td>
<td>Behavioural science</td>
<td>Design science</td>
</tr>
<tr>
<td>Parent Discipline</td>
<td>Social science</td>
<td>Social science</td>
<td>IS strand of the Sciences of the Artificial (Gregor and Jones 2007)</td>
</tr>
<tr>
<td>Philosophy</td>
<td>Positivist</td>
<td>Positivist/realist</td>
<td>Realist</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Quantitative & qualitative</td>
<td>Qualitative & quantitative</td>
<td>Expert evaluation</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exploratory</td>
<td>Explanatory</td>
<td>Application</td>
</tr>
<tr>
<td>Phenomena</td>
<td>Organization</td>
<td>Organization</td>
<td>Problem solving artefact</td>
</tr>
<tr>
<td>Outcome</td>
<td>Theory building: analysing and describing</td>
<td>Theory building: explaining and predicting</td>
<td>Design and action</td>
</tr>
<tr>
<td>Contribution</td>
<td>Empirical ITSM metrics and benefits</td>
<td>A contingency theory of ITSM performance measurement</td>
<td>ITSM performance measurement framework</td>
</tr>
</tbody>
</table>

The macro and micro cycles of MAPS are depicted in Figure 2 and Figure 3 respectively. In the macro
cycle, analysis refers to 'the true' how it is today; projection is 'the ideal' how it should be; and
synthesis is 'the real' how it is tomorrow (Jonas 2007).
Figure 2: Analysis - projection - synthesis: the macro cycle of the design process (Source: Jonas 2007)

Figure 3: Research-analysis-synthesis-realization: the micro cycle of the design process (Source: Jonas 2007)

Jonas (2007) advises that a hyper cyclic generic design process model results from combining the domains of knowing in the macro model (analysis, projection, synthesis) with the learning phases in the micro model (research, analysis, synthesis, realization) as depicted in Figure 4.

Figure 4: Generic, hyper cyclic model of the design process (Source: Jonas 2007)

5.1 Macro cycle of design process

The first step in the macro cycle of the design process, *analysis*, is undertaken using the findings of the initial stages of our project and provides us with information of 'the true', that is, how ITSM performance measurement is currently conducted in industry. Integrating the findings of the literature review, survey and case study we gained empirical knowledge as well as in-depth qualitative knowledge of the state of the art in ITSM performance measurement.

The second step in the macro cycle, *projection*, deals with 'the ideal' and through the literature review and content analysis of the case studies we get an understanding of how performance measurement could be in the ideal. We generate an initial model of the ITSM PMF as it should be, depicted in Figure 5.
The model proposed in Figure 5 can be used by organizations to measure the performance of their ITSM as well as evaluate the metrics they are currently using for completeness in service orientation, financial and non-financial perspectives in broad economic terms. The metrics within each perspective are categorized into service, function, process and technology dimensions. These represent ITSM function, ITSM process and ITSM technology metrics while the service dimension includes metrics to account for end-to-end process outcomes. At the industry level, wide adoption of the performance measurement model would lead to standardization of ITSM performance measurement and enhance the ability of organizations implementing ITSM to benchmark against other organizations using like terms.

![Diagram of ITSM metrics](image)

Figure 5: Model to measure the performance of ITSM

Synthesis, the third step in the macro cycle of the design process is achieved in our project by working with a panel of industry and academic experts to identify how to contextualize the ITSM PMF. In this step the framework is compared against the performance measurement practices currently in place in organizations. The panel of experts contributes to the development of a method to evaluate the ITSM PMF.

5.2 Micro cycle of design process

In the micro cycle of our project, *research* involves the data collection through literature review, survey questionnaires and case studies. *Analysis* entails using the findings of the qualitative and quantitative data analysis from the project stage two. *Synthesis* involves employing the five aspects of ‘designerly ways of knowing’ described in Section 4:

1. The problem was ill-defined as a PMF had not been previously developed and the dimensions of the framework were unknown;

2. The focus was to develop a solution to the problem: ITSM practitioners experience challenges in measuring and reporting the performance of ITSM;

3. A constructive mode of thinking was adopted to develop, populate and implement the PMF;

4. Figure 5 is an example of the visual representation of codes used to translate the abstract requirements of dimensions to arrange metrics for the metrics catalogue;

5. This model informed the database design ('object language') of the repository to store the elements of the PMF including metrics, benefits, processes, BSC perspective, challenges, and business sector.

Realization includes the evaluation and communication of the prototype.
Francis Gacenga et al.

For each phase of the macro cycle (analysis, projection and synthesis), four steps in the micro cycle were undertaken (research, analysis, synthesis and realization). Table 3 presents a summary showing the specific design elements for the macro and micro design cycles. We developed a prototype and stopped at proof of concept with further development possible in future projects. Several iterations on the design prototype were undertaken.

An ITSM metrics catalogue was developed to populate the ITSM PMF. Proof of concept involved demonstration of the use of the ITSM PMF. The demonstration aimed to solve the problem of measuring the performance of ITSM in the case study organizations. This involved using the ITSM PMF as a guide to selecting relevant and contextualized ITSM performance metrics for the organization and then generating meaningful ITSM performance reports for the business. The revised design science method process model is shown in Figure 6.

Table 3: Summary of hyper cyclic model applied to the ITSM PMF project

<table>
<thead>
<tr>
<th>Macro Cycle</th>
<th>Micro Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>Literature review findings</td>
</tr>
<tr>
<td>Projection</td>
<td>Survey and case study data</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Interactions with panel of experts and ITSM practitioners</td>
</tr>
</tbody>
</table>

![Figure 6: Revised design science method process model](image)

6. Evaluation and communication

Evaluation and communication are important requirements in design science research (Cleven et al. 2009; Gregor and Jones 2007). In a detailed evaluation of our artefact we apply the guidance and fitness-utility model for design science research proposed in Gill and Hevner (2011).

The artefact is evaluated for its usefulness and fitness, on its capability to assist the organization to select contextualized metrics, generate relevant reports to the organization and provide an integrated set of ITSM performance metrics. ITSM managers and a panel of experts provided feedback as input to build the final prototype. The results of the literature review, survey, case study and design research have been communicated through publications in industry and academic journals and conferences.
7. Conclusions

In summary, the review of the IS design science literature revealed a scarcity of guidance on the design of the artefact, despite a substantial research effort on other aspects of the field, such as the general steps in design science, problem identification, objectives of solutions, evaluation of the artefacts and project management. Our project aimed to develop a framework artefact that can be used for the performance measurement of ITSM investments in organizations. The project uses the Information Systems Design Research (ISDR) approach (Peffers et al. 2008). The objective of this paper has been achieved: the silence on design in IS design science has been highlighted and a design approach has been proposed and trialled in our project.

We approached the fusion of science and design following the advice from the literature. After exploring the design gap in IS design science, we identified the MAPS approach from a discipline outside of IS and used it in our project. Using a design process from the design literature advocating ‘designerly ways of knowing’ we applied the integrative MAPS approach (Chow and Jonas 2008). We integrated the IS design science research approach with the MAPS model. Based on MAPS, we applied the macro cycle of analysis-projection-synthesis and the micro cycle of research-analysis-synthesis-realization to create an approach to design the prototype of the ITSM PMF.

We recognize as a limitation to this work that there may be other design approaches from other disciplines, however, the design process proposed here may be useful for other IS researchers faced with the dilemma of how to design the artefact in an IS design science project. This multi-discipline approach improved the rigor of our ITSM project by using a systematic and repeatable approach to guide the design step in developing the framework. This paper contributes to the body of knowledge on design science by proposing a design approach to fill the current gap.

Note: ITIL® is a registered trademark of the UK, Office of Government Commerce.

References

