UNIVERSITY OF SOUTHERN QUEENSLAND

INTEGRATED RADIAL BASIS FUNCTION
METHODS FOR STRUCTURAL, FLUID FLOW AND
FLUID-STRUCTURE INTERACTION ANALYSES

A dissertation submitted by

DUC NGO-CONG

B.Eng., Ho-Chi-Minh City University of Technology, Vietnam, 2006
M.Eng. (Hon.), Gyeongsang National University, South Korea, 2008

For the award of the degree of

Doctor of Philosophy

February 2012
Dedication

To my family.
Certification of Dissertation

I certify that the ideas, experimental work, results and analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award.

Duc Ngo-Cong, Candidate

ENDORSEMENT

Prof. Thanh Tran-Cong, Principal supervisor

A/Prof. Warna Karunasena, Co-supervisor

Prof. Nam Mai-Duy, Co-supervisor
Acknowledgments

The research reported in this thesis was carried out at the Computational Engineering and Science Research Centre (CESRC) and the Centre of Excellence in Engineered Fibre Composites (CEEF C), USQ.

Firstly, I would like to express my deepest gratitude to Prof. Thanh Tran-Cong, my principal supervisor, for his invaluable guidance and useful suggestions. Without his continuous support, this thesis would not have been completed.

I would like to thank A/Prof. Karu Karunasena and Prof. Nam Mai-Duy, my co-supervisors, for their instructive discussions during my PhD research.

I would like to thank A/Prof. Armando A. Apan, Ms. Katrina Hall, Prof. David Buttsworth, Mrs. Juanita Ryan, and Mr. Martin Geach for their kind support.

I gratefully acknowledge the financial support provided by the USQ through a USQ Postgraduate Research Scholarship and a CESRC supplement.

Also, I would like to thank my dearest friends for their help over the past years.

Finally, I would like to dedicate this work to my parents, my brothers and Lucy Ha. I am greatly indebted to them for their unconditional support, love and encouragement.
Notes to Readers

Attached to this thesis is a CD-ROM containing the following files:

1. thesis.pdf: An electronic version of this thesis;

2. Square_BR_1.2_Re_160_streamlines.wmv, Square_BR_1.4_Re_160_streamlines.wmv, Square_BR_1.8_Re_090_streamlines.wmv, and Square_BR_1.8_Re_160_streamlines.wmv: Animations showing the evolution of streamlines around a square cylinder in a channel for different blockage ratios and Reynolds numbers (Chapter 5, Example 2);

3. Square_BR_1.2_Re_160_vorticity.wmv, Square_BR_1.4_Re_160_vorticity.wmv, Square_BR_1.8_Re_090_vorticity.wmv, and Square_BR_1.8_Re_160_vorticity.wmv: Animations showing the evolution of vorticity field around a square cylinder in a channel for different blockage ratios and Reynolds numbers (Chapter 5, Example 2);

4. Circular_Re_100_streamlines.wmv: An animation showing the evolution of streamlines around a circular cylinder (Chapter 5, Example 3);

5. Circular_Re_100_vorticity.wmv: An animation showing the evolution of vorticity field around a circular cylinder (Chapter 5, Example 3);

6. Cavity_prescribed_flexible_bottom_case1.wmv and Cavity_prescribed_flexible_bottom_case2.wmv: Animations showing the evolution of streamlines inside a lid-driven open-cavity with a prescribed bottom wall motion for Case 1 and Case 2. (Chapter 6, Example 2);
7. Cavity_fsi_simply_supported_bottom.wmv: An animation showing the evolution of streamlines inside a lid-driven open-cavity with a simply supported bottom wall. (Chapter 6, Example 4); and

8. Cavity_fsi_clamped_bottom.wmv: An animation showing the evolution of streamlines inside a lid-driven open-cavity with a clamped bottom wall. (Chapter 6, Example 4).
Abstract

The present research is concerned with the development of new numerical methods based on integrated radial basis function network (IRBFN) and collocation techniques for solving structural, fluid-flow and fluid-structure-interaction problems. Simply and multiply-connected domains with rectangular or non-rectangular shapes are discretised by means of Cartesian grids.

An effective one-dimensional integrated radial basis function network collocation technique, namely 1D-IRBFN, is developed for the free vibration analysis of laminated composite plates using the first order shear deformation theory (FSDT). Instead of using conventional differentiated RBF networks, 1D-IRBF networks are employed on grid lines to approximate the field variables. A number of examples concerning various thickness-to-span ratios, material properties and boundary conditions of the composite plates are investigated.

A novel local moving least square - one-dimensional integrated radial basis function network method, namely LMLS-1D-IRBFN, is proposed for solving incompressible viscous flow problems. The method is demonstrated with the analyses of lid-driven cavity flow and flow past a circular cylinder using stream-function - vorticity formulation. In this approach, the partition of unity method is employed as a framework to incorporate the moving least square (MLS) and 1D-IRBFN techniques. The major advantages of the proposed method include: (i) a banded sparse system matrix which helps reduce the computational cost; (ii) the Kronecker-δ property of the constructed shape functions, which helps impose the essential boundary conditions in an exact manner; and (iii) high
accuracy and fast convergence rate owing to the use of integration instead of conventional differentiation to construct the local RBF approximations.

The LMLS-1D-IRBFN method is then developed to study natural convection flows in multiply-connected domains in terms of stream function, vorticity and temperature. The unknown stream function value on the inner boundary is determined by using the single-valued pressure condition (Lewis, 1979). The LMLS-1D-IRBFN method is further extended and applied to solve time dependent problems such as Burgers’ equation, unsteady flow past a square cylinder in a horizontal channel and unsteady flow past a circular cylinder. For fluid flow problems, the diffusion terms are discretised by using LMLS-1D-IRBFN method, while the convection terms are explicitly calculated by using 1D-IRBFN method. The present numerical procedure is combined with a domain decomposition technique to handle large-scale problems. Flow parameters such as drag coefficient, length of recirculation zone, Strouhal number and the effect of blockage ratio on the behaviour of the flow field behind the cylinder are investigated.

A numerical procedure based on 1D-IRBFN and local MLS-1D-IRBFN methods is proposed for solutions of fluid-structure interaction problems. A combination of Chorin’s method and pseudo-time subiterative technique is presented for a transient solution of 2-D Navier-Stokes equations for incompressible viscous flow in terms of primitive variables. The fluid solver is first verified through a solution of mixed convection in a lid-driven cavity with a hot-temperature lid and a cold-temperature bottom wall. The FSI numerical procedure is then applied to simulate flows in a lid-driven open-cavity with a flexible bottom wall. The Newmark’s method is employed for structural analysis of the flexible bottom wall based on the Euler-Bernoulli theory.

Numerical results obtained in the present research are compared with corresponding analytical solutions, where possible, and numerical results by other techniques in the literature.
Papers Resulting from the Research

Journal Papers

Conference Papers

Contents

Dedication i

Certification of Dissertation ii

Acknowledgments iii

Notes to Readers iv

Abstract vi

Papers Resulting from the Research viii

Acronyms & Abbreviations xvii

List of Tables xviii

List of Figures xxvi
Chapter 1 Introduction

1.1 Motivation ... 1
1.2 Governing equations for fluid, structure and fluid-structure interaction 3
1.3 A brief review of traditional numerical methods ... 6
1.4 A brief review of structural, fluid and fluid-structure interaction analyses 8
1.5 Radial basis function networks ... 11
1.6 Discussion and objectives of the present research ... 13
1.7 Outline of the present research ... 15

Chapter 2 1D-IRBFN method for free vibration of laminated composite plates

2.1 Introduction ... 18
2.2 Governing equations ... 23
 2.2.1 First-order shear deformation theory ... 23
 2.2.2 Boundary conditions ... 26
2.3 One-dimensional indirect/integrated radial basis function networks 28
 2.3.1 IRBFN expressions on a grid line (1D-IRBFN scheme) 28
2.3.2 1D-IRBFN expressions over the whole computational domain .. 33

2.4 One-dimensional IRBFN discretisation of laminated composite plates 35

2.5 Numerical results and discussion ... 37
 2.5.1 Example 1: Rectangular laminated plates ... 38
 2.5.2 Example 2: Circular laminated plates ... 48
 2.5.3 Example 3: Square isotropic plate with a square hole ... 51

2.6 Concluding remarks .. 53

Chapter 3 Local MLS-1D-IRBFN method for steady incompressible viscous flows 54

3.1 Introduction .. 55

3.2 Notations .. 60

3.3 Moving least square approximation .. 60

3.4 Local moving least square - one dimensional integrated radial basis function network technique ... 63
 3.4.1 One-dimensional IRBFN .. 64
 3.4.2 Incorporation of MLS and 1D-IRBFN into the partition of unity framework 68
3.5 Governing equations for two-dimensional incompressible viscous flows .. 71

3.6 LMLS-1D-IRBFN discretisation of governing equations for incompressible viscous flows 71

3.7 Numerical results and discussion .. 73

3.7.1 Example 1: Two-dimensional Poisson equation in a square domain .. 73

3.7.2 Example 2: Two-dimensional Poisson equation in a square domain with a circular hole 79

3.7.3 Example 3: Lid-driven cavity flow .. 83

3.7.4 Example 4: Flow past a circular cylinder .. 91

3.8 Concluding remarks .. 102

Chapter 4 Local MLS-1D-IRBFN method for natural convection in multiply-connected domains

4.1 Introduction .. 104

4.2 Local moving least square - one dimensional integrated radial basis function network technique 109

4.3 Governing equations for natural convection flows .. 110

4.4 Numerical results and discussion .. 112
4.4.1 Example 1: Two-dimensional Poisson equation in a square
domain with a circular hole 113

4.4.2 Example 2: Concentric annulus between two circular cylin-
ders ... 116

4.4.3 Example 3: Concentric annulus between a square outer
cylinder and a circular inner cylinder 121

4.4.4 Example 4: Eccentric annulus between a square outer
cylinder and a circular inner cylinder 124

4.5 Concluding remarks ... 133

Chapter 5 Local MLS-1D-IRBFN method for unsteady incomp-
pressible viscous flows 134

5.1 Introduction .. 135

5.2 Local moving least square - one dimensional integrated radial
basis function network technique 140

5.3 Governing equations for 2-D unsteady incompressible viscous flows 141

5.4 Numerical results and discussion 143

5.4.1 Example 1: Burgers’ equation 143

5.4.2 Example 2: Steady and unsteady flows past a square
cylinder in a horizontal channel 149

5.4.3 Example 3: Unsteady flows past a circular cylinder ... 167
5.5 Concluding remarks ... 173

Chapter 6 A numerical procedure based on 1D-IRBFN and local MLS-1D-IRBFN methods for fluid-structure interaction analysis .. 174

6.1 Introduction .. 175

6.2 1D-IRBFN and local MLS-1D-IRBFN methods 179

6.2.1 1D-IRBFN methods ... 179

6.2.2 Local moving least square - one dimensional integrated radial basis function network technique .. 181

6.3 Governing equations for fluid, structure and fluid-structure interaction .. 183

6.3.1 Governing equations for forced vibration of a beam 183

6.3.2 Governing equations for 2-D incompressible viscous flows 184

6.3.3 Coupled equations for fluid-structure interaction 185

6.4 Numerical procedures ... 185

6.4.1 Fractional-step projection method (Chorin’s method) 186

6.4.2 Combination of fractional-step projection method and subita-
erative technique ... 189

6.4.3 Determine variable values at “freshly cleared” nodes ... 192
6.4.4 Sequential staggered fluid-structure interaction algorithm 193

6.5 Numerical results and discussion 196

6.5.1 Example 1: Mixed convection in a lid-driven cavity 196

6.5.2 Example 2: Flow in a lid-driven open-cavity with a pre-
scribed bottom wall motion . 204

6.5.3 Example 3: Forced vibration of a simply supported beam 212

6.5.4 Example 4: Fluid-structure interaction in a lid-driven
open-cavity flow with a flexible bottom wall 214

6.6 Concluding remarks . 218

Chapter 7 Conclusions 219

Appendix A Basis Functions Used in One-Dimensional Integrated
Radial Basis Function Networks Schemes 223

References 225
Acronyms & Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D-IRBFN</td>
<td>One-dimensional Indirect/Integrated Radial Basis Function Network</td>
</tr>
<tr>
<td>BEM</td>
<td>Boundary Element Method</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>DRBFN</td>
<td>Direct Radial Basis Function Network</td>
</tr>
<tr>
<td>FDM</td>
<td>Finite Difference Method</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FVM</td>
<td>Finite Volume Method</td>
</tr>
<tr>
<td>FSI</td>
<td>Fluid Structure Interaction</td>
</tr>
<tr>
<td>IRBFN</td>
<td>Indirect/Integrated Radial Basis Function Network</td>
</tr>
<tr>
<td>LHS</td>
<td>Left Hand Side</td>
</tr>
<tr>
<td>LMLS-1D-IRBFN</td>
<td>Local Moving Least Square - One-dimensional Indirect/Integrated Radial Base Function Network</td>
</tr>
<tr>
<td>MLPG</td>
<td>Meshless Local Petrov-Galerkin method</td>
</tr>
<tr>
<td>MLS</td>
<td>Moving Least Square</td>
</tr>
<tr>
<td>MQ</td>
<td>Multiquadric</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary Differential Equation</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial Differential Equation</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RBFN</td>
<td>Radial Basis Function Network</td>
</tr>
<tr>
<td>RHS</td>
<td>Right Hand Side</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Simply supported three-ply [0°/90°/0°] square laminated plate: convergence study of nondimensionalised natural frequencies $\bar{\omega} = \omega \left(\frac{b^2}{\pi^2} \right) \sqrt{\frac{\rho h}{D_0}}$ by two approaches, $t/b = 0.2$. Here cond denotes the condition number. ... 39

2.2 Simply supported three-ply [0°/90°/0°] rectangular laminated plate: convergence study of nondimensionalised natural frequencies $\bar{\omega} = \omega \left(\frac{b^2}{\pi^2} \right) \sqrt{\frac{\rho h}{D_0}}$ using Approach 1. Note that Ferreira and Fasshauer (2007) used 19x19 grid. .. 40

2.3 Clamped three-ply [0°/90°/0°] rectangular laminated plate: convergence study of nondimensionalised natural frequencies $\bar{\omega} = \omega \left(\frac{b^2}{\pi^2} \right) \sqrt{\frac{\rho h}{D_0}}$ using Approach 1. Note that Ferreira and Fasshauer (2007) used 19x19 grid. .. 40

2.4 Simply supported four-ply [0°/90°/90°/0°] square laminated plate: effect of thickness-to-length ratio on the nondimensionalised fundamental frequency $\bar{\omega} = \omega \left(\frac{b^2}{\pi^2} \right) \sqrt{\frac{\rho h}{D_0}}$ in comparison with other published results, using Approach 1 and a grid of 13 × 13. 41
2.5 Three-ply \([0^\circ/90^\circ/0^\circ]\) rectangular laminated plates with various boundary conditions: effect of thickness-to-length ratio on nondimensionalised natural frequencies \(\bar{\omega} = \frac{\omega b^2}{\pi^2} \sqrt{\frac{\rho h}{D_0}}\), using Approach 1 and a grid of \(13 \times 13\).......... 43

2.6 Four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) rectangular laminated plates with various boundary conditions: effect of thickness-to-length ratio on nondimensionalised natural frequency \(\bar{\omega} = \frac{\omega b^2}{\pi^2} \sqrt{\frac{\rho h}{D_0}}\), using Approach 1 and a grid of \(13 \times 13\).......... 44

2.7 Simply supported four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) square laminated plate: effect of modulus ratio \(E_1/E_2\) on the accuracy of nondimensionalised fundamental frequency \(\bar{\omega} = \frac{\omega b^2}{h} \sqrt{\frac{\rho}{E_2}}, t/b = 0.2\), using Approach 1 and a grid of \(13 \times 13\), \(K_s = 5/6\).......... 47

2.8 Simply supported four-ply \([\beta^\circ/-\beta^\circ/-\beta^\circ/\beta^\circ]\) circular laminated plate: convergence study of nondimensionalised natural frequencies for various mode number \(\bar{\omega} = \frac{\omega b^2}{h} \sqrt{\frac{\rho}{E_2}}, t/b = 0.1, E_1/E_2 = 40\). 49

2.9 Clamped four-ply \([\beta^\circ/-\beta^\circ/-\beta^\circ/\beta^\circ]\) circular laminated plate: convergence study of nondimensionalised natural frequencies for various mode number \(\left(\bar{\omega} = \frac{\omega b^2}{h} \sqrt{\frac{\rho}{E_2}}, t/b = 0.1, E_1/E_2 = 40\right)\). 50

2.10 Clamped four-ply \([\beta^\circ/-\beta^\circ/-\beta^\circ/\beta^\circ]\) circular laminated plate: effect of thickness-to-diameter ratio on nondimensionalised natural frequencies for various mode numbers, \(\bar{\omega} = \frac{\omega b^2}{h} \sqrt{\frac{\rho}{E_2}}, E_1/E_2 = 40\), using a grid of \(15 \times 15\). 50

2.11 Simply supported square isotropic plate: Comparison of nondimensionalised natural frequencies among 1D-IRBF, Strand7 and exact results, \(\bar{\omega} = \frac{\omega b^2}{h} \sqrt{\frac{\rho}{E_2}}, t/b = 0.1, K_s = 5/6\).......... 52
2.12 Simply supported square isotropic plate with a square hole: Comparison of nondimensionalised natural frequencies between 1D-IRBF and Strand7 results, $\bar{\omega} = (\omega b^2/h) \sqrt{\rho/E_2}$, $t/b = 0.1$, $K_s = 5/6$. .. 52

3.1 Poisson equation in a square domain subject to Dirichlet boundary conditions: comparisons (with FDM and 1D-IRBFN) of the number of nonzero elements per row of the system matrix (N_{nzpr}) and condition number (cond). The system matrix is stored in a sparse matrix format. .. 77

3.2 Poisson equation in a square domain subject to Dirichlet boundary conditions: comparison (with FDM and 1D-IRBFN) of CPU time and percentage of nonzero elements of the system matrix (ϵ). Note that for a given grid size the present Approach 2 is slower than the FDM. However, the present Approach 2 achieves a given level of accuracy with a coarser grid and hence more efficient. For example, as shown in Figure 3.3, the present Approach 2 with grid=21 \times 21 yields better accuracy ($N_e = 6.88e-6$) in 0.88 seconds than the FDM with grid=121 \times 121 ($N_e = 3.49e-5$) in 1.74 seconds. .. 78

3.3 Poisson equation in a square domain subject to Dirichlet and Neumann boundary conditions: comparison condition number (cond). .. 79

3.4 Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: comparison of relative error norm (N_e) and condition number (cond). .. 81
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: comparison of CPU time and percentage of nonzero elements of the system matrix (ϵ).</td>
<td>81</td>
</tr>
<tr>
<td>3.6</td>
<td>Lid-driven cavity flow, $Re = 1000$: the grid convergence study and comparison of extrema of velocity profiles along the center lines. The convection terms are calculated using LMLS-1D-IRBFN technique. Note that “Error” is relative to a Benchmark solution.</td>
<td>86</td>
</tr>
<tr>
<td>3.7</td>
<td>Lid-driven cavity flow, $Re = 1000$: comparisons of the number of nonzero elements per row of the system matrix (N_{nzpr}), number of iterations ($N_{iteration}$) and total CPU time (T_{total}) required to obtain the converged solution with $TOL = 10^{-12}$. The time step Δt is set to be 5×10^{-3} for all cases. Note that for a given grid size the present approach is slower than the FDM. However, the present approach achieves a given level of accuracy with a coarser grid and hence more efficient. For example, as shown in Table 3.6, the present approach with grid=81×81 yields better accuracy in 1559.77 seconds than the FDM with grid=129×129 in 1733.02 seconds.</td>
<td>87</td>
</tr>
<tr>
<td>3.8</td>
<td>Lid-driven cavity flow, $Re = 1000$: the grid convergence study and comparison of extrema of horizontal and vertical velocity profiles along the center lines. The convection terms are calculated using 1D-IRBFN technique. Note that “Error” is relative to a Benchmark solution.</td>
<td>88</td>
</tr>
<tr>
<td>3.9</td>
<td>Flow past a circular cylinder: comparison of the wake length (L_{sep}), the separation angle (θ_{sep}) and the drag coefficient (C_D) for $Re = 5, 10, 20$ and 40, using a grid of 151×151.</td>
<td>98</td>
</tr>
</tbody>
</table>
List of Tables

xxii

4.1 Poisson equation in a square domain with a circular hole subject
to Dirichlet boundary conditions: comparison of relative error
norm (Ne), condition number (cond) and percentage of nonzero
elements of the system matrix (ε), using β = 1 for 1D-IRBFN
and β = 6 for the present method (LMLS-1D-IRBFN). 114
4.2 Concentric annulus between two circular cylinders: Grid convergence study of the average equivalent conductivity on the
outer and inner cylinders, keqo and keqi , respectively, for different
Rayleigh numbers. 117
4.3 Concentric annulus between a square outer cylinder and a circular inner cylinder: Grid convergence study of the average Nusselt
number on the inner and outer cylinders, Nui and Nuo , respectively, for different Rayleigh numbers. 122
4.4 Eccentric annulus between a square outer cylinder and a circular inner cylinder: Comparison of the maximum stream-function
values ψmax for different values of ε0 and ϕ. 126
4.5 Eccentric annulus between a square outer cylinder and a circular
inner cylinder: Comparison of the stream-function values on the
inner cylinder ψwall for different values of ε0 and ϕ. 126
4.6 Eccentric annulus between a square outer cylinder and a circular
inner cylinder: Comparison of the average Nusselt number Nu
for different values of ε0 and ϕ. 127

5.1 Burgers’ equations, approximation of shock wave propagation:
comparison of numerical results and exact solution at t = 1.0 for
Re = 100 and several time step sizes, using a grid of 61. (1)
1D-IRBFN, (2) LMLS-1D-IRBFN 145


<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Burgers’ equations, approximation of shock wave propagation: grid convergence study of numerical results for $Re = 100$, $t = 1.0$, and $\Delta t = 10^{-3}$. (1) 1D-IRBFN, (2) LMLS-1D-IRBFN</td>
<td>146</td>
</tr>
<tr>
<td>5.3</td>
<td>Burgers’ equations, sinusoidal initial condition: comparison among the numerical results of LMLS-1D-IRBFN and Local-RBF (Hosseini and Hashemi, 2011) and the analytical solution for $Re = 10$, $\Delta t = 10^{-3}$.</td>
<td>147</td>
</tr>
<tr>
<td>5.4</td>
<td>Burgers’ equations, sinusoidal initial condition: comparison among the numerical results of LMLS-1D-IRBFN and Local-RBF (Hosseini and Hashemi, 2011) and the analytical solution for $Re = 100$, $\Delta t = 10^{-3}$.</td>
<td>147</td>
</tr>
<tr>
<td>5.5</td>
<td>Burgers’ equations, sinusoidal initial condition: comparison among numerical results and exact solution for $Re = 10000$, $\Delta t = 10^{-4}$, using a grid of 301.</td>
<td>148</td>
</tr>
<tr>
<td>5.6</td>
<td>Burgers’ equations, sinusoidal initial condition: comparison of numerical results for $Re = 10000$, $\Delta t = 10^{-4}$, using a grid of 301.</td>
<td>148</td>
</tr>
<tr>
<td>5.7</td>
<td>Steady flow past a square cylinder in a channel: grid convergence study of recirculation length L_r and drag coefficient C_D for $Re = 40.154$</td>
<td>154</td>
</tr>
<tr>
<td>5.8</td>
<td>Steady flow past a square cylinder in a channel: comparison of recirculation length L_r and drag coefficient C_D, using a grid of 571×351.</td>
<td>154</td>
</tr>
<tr>
<td>5.9</td>
<td>Unsteady flow past a square cylinder in a channel: Strouhal number St and time-averaged drag coefficient C_{Dm} for different blockage ratios $\beta_0 = 1/2$, 1/4 and 1/8, using grids of 645×191, 645×271 and 645×367, respectively. Note that in the case of $\beta_0 = 1/2$, 1/4, the flow is still steady for $Re = 60, 80$.</td>
<td>163</td>
</tr>
</tbody>
</table>
5.10 Unsteady flow past a circular cylinder: Strouhal number St for different Reynolds number $Re = 80, 100$ and 200. 169

5.11 Unsteady flow past a circular cylinder: Drag coefficient C_D for different Reynolds number $Re = 80, 100$ and 200. 169

5.12 Unsteady flow past a circular cylinder: Lift coefficient C_L for different Reynolds number $Re = 80, 100$ and 200. 169

6.1 Mixed convection in a lid-driven cavity: grid convergence study and comparison of the average Nusselt number (Nu) at the top wall for the Grashof number $Gr = 10^2$, and several Reynolds numbers $Re = 100, 400$ and 1000, using the 1D-IRBFN method (Approach 1) and the numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods (Approach 2). . . . 198

6.2 Mixed convection in a lid-driven cavity: grid convergence study and comparison of the average Nusselt number (Nu) at the top wall for the Grashof number $Gr = 10^4$, and several Reynolds numbers $Re = 100, 400$ and 1000, using the 1D-IRBFN method (Approach 1) and the numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods (Approach 2). . . . 198

6.3 Mixed convection in a lid-driven cavity: grid convergence study and comparison of the average Nusselt number (Nu) at the top wall for the Grashof number $Gr = 10^6$, and several Reynolds numbers $Re = 100, 400$ and 1000, using the 1D-IRBFN method (Approach 1) and the numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods (Approach 2). . . . 199
6.4 Forced vibration of a simply supported beam: Relative error norms of deflection $Ne(u)$ and velocity $Ne(v)$ at time $t = 14s$, using several time steps.

213
List of Figures

2.1 Cartesian grid. .. 29

2.2 Simply supported four-ply [0°/90°/90°/0°] square laminated plate:
errors of nondimensionalised fundamental frequency \(\epsilon = (\bar{\omega} - \bar{\omega}_E)/\bar{\omega}_E \)
with respect to thickness-to-length ratios \(t/b \). 42

2.3 Mode shapes for simply supported three-ply [0°/90°/0°] square
laminated plate with \(t/b = 0.2 \) and grid of 15 × 15. 45

2.4 Mode shapes for simply supported three-ply [0°/90°/0°] rectangular laminated plate with \(a/b = 2, t/b = 0.2 \) and grid of 15 × 15. 45

2.5 Mode shapes for clamped three-ply [0°/90°/0°] square laminated
plate with \(t/b = 0.2 \) and grid of 15 × 15. 46

2.6 Simply supported four-ply square laminated plate [0°/90°/90°/0°]:
errors of nondimensionalised fundamental frequency \(\epsilon = (\bar{\omega} - \bar{\omega}_E)/\bar{\omega}_E \)
with respect to modulus ratio \(E_1/E_2, t/b = 0.2 \). 47

2.7 Computational domain of four-ply \([\beta^o/ - \beta^o/ - \beta^o/ \beta^o]\) circular
laminated plate. .. 48

2.8 Mode shapes for simply supported four-ply \([45^o/ - 45^o/ - 45^o/45^o]\]
circular laminated plate, \(t/b = 0.1 \), grid of 19 × 19. 49
2.9 Mode shapes of simply supported square isotropic plate with a square hole, \(t/b = 0.1 \), using a grid of \(17 \times 17 \) 52

3.1 Cartesian grid discretisation.. 61

3.2 LMLS-1D-IRBFN-3-node scheme, \(\square \) a typical \([j] \) node. 64

3.3 Poisson equation in a square domain subject to Dirichlet boundary conditions: convergence study for 1D-IRBFN, Approach 1 with \(\beta = \) 10 and Approach 2 with \(\beta = \) 15. FDM (central difference) results are included for comparison. 75

3.4 Poisson equation in a square domain subject to Dirichlet and Neumann boundary conditions: convergence study for 1D-IRBFN, Approach 1 with \(\beta = \) 10 and Approach 2 with \(\beta = \) 5. 76

3.5 A square domain with a circular hole.. 80

3.6 Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: convergence study for 1D-IRBFN and the present method (LMLS-1D-IRBFN-5-node) with \(\beta = \) 15. ... 82

3.7 Lid-driven cavity flow: problem geometry and boundary conditions. 83

3.8 Lid-driven cavity flow: contours of stream function (left) and vorticity (right) for different Reynolds numbers \(Re = 1000, 3200 \) and 7500, using grids of \(101 \times 101, 121 \times 121, \) and \(151 \times 151 \), respectively. 89
3.9 Lid-driven cavity flow: comparison of profiles of vertical and horizontal velocities along the horizontal and vertical center lines of the cavity for different Reynolds numbers $Re = 1000, 3200$ and 7500, using grids of $101 \times 101, 121 \times 121$, and 151×151, respectively. 90

3.10 Flow past a circular cylinder: problem geometry and boundary conditions. 91

3.11 Circular cylinder and associated coordinate systems. 92

3.12 Non-overlapping partition of the domain Ω into two subdomains Ω_1 and Ω_2. 95

3.13 Flow past a circular cylinder: grid configuration. 99

3.14 Flow past a circular cylinder: grid convergence study, $Re = 40$. 99

3.15 Flow past a circular cylinder: comparison of vorticity on the circular cylinder in the cases of $Re = 5, 10, 20$ and 40, using a grid of 151×151. 100

3.16 Flow past a circular cylinder: comparison of pressure coefficient on the circular cylinder in the cases of $Re = 5, 10, 20$ and 40, using a grid of 151×151. 100

3.17 Flow past a circular cylinder: contours of stream function (left) and vorticity (right) for the cases of $Re = 5, 10, 20$ and 40, from top to bottom, using a grid of 151×151. 101

4.1 LMLS-1D-IRBFN scheme, □ a typical $[j]$ node. 110

4.2 A square domain with a circular hole. 113
4.3 Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: β-adaptivity study for the present method (LMLS-1D-IRBFN). 115

4.4 Concentric annulus between two circular cylinders: problem geometry and boundary conditions. Angular positions are measured clockwise from the positive y-axis. Note that computational boundary conditions for vorticity are determined by Equations (4.10)-(4.14). 116

4.5 Concentric annulus between two circular cylinders: influence of Rayleigh number on local and average equivalent conductivities on the inner cylinders. 118

4.6 Concentric annulus between two circular cylinders: influence of Rayleigh number on local and average equivalent conductivities on the outer cylinders. 118

4.7 Concentric annulus between two circular cylinders: contours of temperature (left) and stream function (right) for different Rayleigh numbers $Ra = 10^2, 10^3, 3 \times 10^3$ and 6×10^3, from top to bottom, using a grid of 61×61. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 119

4.8 Concentric annulus between two circular cylinders: contours of temperature (left) and stream function (right) for different Rayleigh numbers $Ra = 10^4, 5 \times 10^4$ and 7×10^4, from top to bottom, using a grid of 61×61. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 120
4.9 Concentric annulus between a square outer cylinder and a circular inner cylinder: problem geometry and boundary conditions. Note that computational boundary conditions for vorticity are determined by Equations (4.10)-(4.14). 121

4.10 Concentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for different Rayleigh numbers $Ra = 5 \times 10^4, 5 \times 10^5, 5 \times 10^5$ and 10^6, from top to bottom, using a grid of 63×63. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 123

4.11 Eccentric annulus between a square outer cylinder and a circular inner cylinder: problem geometry and boundary conditions. The angular position φ of the center of the inner cylinder is measured counterclockwise from the positive x-axis. Note that computational boundary conditions for vorticity are determined by Equations (4.10)-(4.14). 125

4.12 Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50, 0.75$ and 0.95, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = -45^\circ$, using a grid of 82×82. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 128
4.13 Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50$ and 0.75, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = 0^\circ$, using a grid of 108×108 for the case $\varepsilon_0 = 0.75$ and a grid of 82×82 for the others. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 129

4.14 Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50, 0.75$ and 0.95, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = 45^\circ$, using a grid of 82×82. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 130

4.15 Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.75, 0.50$ and 0.25, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = 90^\circ$, using a grid of 108×108 for the case $\varepsilon_0 = 0.75$ and a grid of 82×82 for the others. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 131

4.16 Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50$ and 0.75, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = -90^\circ$, using a grid of 108×108 for the case $\varepsilon_0 = 0.75$ and a grid of 82×82 for the others. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value. 132

5.1 LMLS-1D-IRBFN scheme, \Box a typical $[j]$ node. 141
5.2 Flow past a square cylinder in a channel: geometry and boundary conditions. The blockage ratio is defined as \(\beta_0 = D/H \). Note that computational boundary conditions for vorticity are determined by Equation (5.9).

5.3 Flow past a square cylinder in a channel: grid configuration.

5.4 Pressure and shear stress acting on the surface of a square cylinder.

5.5 Steady flow past a square cylinder in a channel: grid convergence study of recirculation length \(L_r \) for \(Re = 40 \).

5.6 Steady flow past a square cylinder in a channel: grid convergence study of drag coefficient \(C_D \) for \(Re = 40 \).

5.7 Steady flow past a square cylinder in a channel: contours of stream function for different Reynolds numbers, using a grid of \(571 \times 351 \).

5.8 Unsteady flow past a square cylinder in a channel (blockage ratio \(\beta_0 = 1/8 \)): variation of Strouhal number \(St \) with respect to Reynolds number \(Re \), using different grids of \(547 \times 331 \), \(571 \times 351 \) and \(645 \times 367 \); FVM (Breuer et al., 2000) using a non-uniform grid of \(560 \times 340 \); LBA (Breuer et al., 2000) using a uniform grid of \(2000 \times 320 \); STAM (Berrone and Marro, 2009); CVFEM (Bouaziz et al., 2010) using a non-uniform grid of \(249 \times 197 \).
5.9 Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): variation of time-averaged drag coefficient C_{Dm} with respect to Reynolds number Re, using different grids of 547×331, 571×351 and 645×367; FVM (Breuer et al., 2000) using a non-uniform grid of 560×340; LBA (Breuer et al., 2000) using a uniform grid of 2000×320; STAM (Berrone and Marro, 2009); CVFEM (Bouaziz et al., 2010) using a non-uniform grid of 249×197. .. 159

5.10 Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): variation of drag coefficient C_D and lift coefficient C_L with respect to time t for the case of $Re = 90$, using a grid of 571×351. .. 160

5.11 Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): Contours of stream function for different Reynolds numbers, using a grid of 645×367. .. 161

5.12 Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): Contours of vorticity for different Reynolds numbers, using a grid of 645×367. .. 162

5.13 Unsteady flow past a square cylinder in a channel: variation of time-averaged drag coefficient C_{Dm} with respect to Reynolds number Re for blockage ratios $\beta_0 = 1/2$ and $1/4$, using grids of 645×191 and 645×271, respectively; .. 164

5.14 Unsteady flow past a square cylinder in a channel: variation of time-averaged drag coefficient C_{Dm} with respect to Reynolds number Re for blockage ratios $\beta_0 = 1/2$ and $1/4$, using grids of 645×191 and 645×271, respectively; .. 164
5.15 Unsteady flow past a square cylinder in a channel: Contours of stream function for different Reynolds numbers ($\beta_0 = 1/4$, grid = 645×271). ... 165

5.16 Unsteady flow past a square cylinder in a channel: Contours of vorticity for different Reynolds numbers ($\beta_0 = 1/4$, grid = 645×271). ... 165

5.17 Unsteady flow past a square cylinder in a channel: Contours of stream function for different Reynolds numbers ($\beta_0 = 1/2$, grid = 645×191). ... 166

5.18 Unsteady flow past a square cylinder in a channel: Contours of vorticity for different Reynolds numbers ($\beta_0 = 1/2$, grid = 645×191). ... 166

5.19 Unsteady flow past a circular cylinder: geometry and boundary conditions. Note that computational boundary conditions for vorticity are determined by Equations (5.9)-(5.13). 168

5.20 Unsteady flow past a circular cylinder: grid configuration. 170

5.21 Unsteady flow past a stationary cylinder: drag and lift coefficients C_D and C_L with respect to time for $Re = 100$, using a grid of 548×379. ... 170

5.22 Unsteady flow past a circular cylinder: contours of stream function for different Reynolds numbers $Re = 80, 100$ and 200, using grids of 548×379, 548×379 and 640×379, respectively. 171

5.23 Unsteady flow past a circular cylinder: contours of vorticity for different Reynolds numbers $Re = 80, 100$ and 200, using grids of 548×379, 548×379 and 640×379, respectively. 172
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Cartesian grid discretisation.</td>
<td>180</td>
</tr>
<tr>
<td>6.2</td>
<td>LMLS-1D-IRBFN scheme, □ a typical [j] node.</td>
<td>182</td>
</tr>
<tr>
<td>6.3</td>
<td>Configuration to determine (v^*) at nodes on a curved boundary.</td>
<td>188</td>
</tr>
<tr>
<td>6.4</td>
<td>Configuration to determine initial values at ”freshly cleared” nodes.</td>
<td>193</td>
</tr>
<tr>
<td>6.5</td>
<td>Flowchart of the FSI analysis procedure.</td>
<td>195</td>
</tr>
<tr>
<td>6.6</td>
<td>Mixed convection in a lid-driven cavity: geometry and boundary conditions.</td>
<td>197</td>
</tr>
<tr>
<td>6.7</td>
<td>Mixed convection in a lid-driven cavity: isothermal lines (left) and streamlines (right) of the flow at (Gr = 10^2), and several Reynolds numbers (Re = 100, 400) and 1000, using grids of (61 \times 61), (81 \times 81) and (101 \times 101), respectively. The isothermal values are 25 uniformly distributed values in the range ([T_C, T_H]). The contour values of stream function used here are taken to be the same as those in (Ghia et al., 1982).</td>
<td>201</td>
</tr>
<tr>
<td>6.8</td>
<td>Mixed convection in a lid-driven cavity: isothermal lines (left) and streamlines (right) of the flow at (Gr = 10^4), and several Reynolds numbers (Re = 100, 400) and 1000, using grids of (61 \times 61), (81 \times 81) and (101 \times 101), respectively. The isothermal values are 25 uniformly distributed values in the range ([T_C, T_H]). The contour values of stream function used here are taken to be the same as those in (Ghia et al., 1982).</td>
<td>202</td>
</tr>
</tbody>
</table>
6.9 Mixed convection in a lid-driven cavity: isothermal lines (left) and streamlines (right) of the flow at $Gr = 10^6$, and several Reynolds numbers $Re = 100, 400$ and 1000, using grids of 61×61, 81×81 and 101×101, respectively. The isothermal values are 25 uniformly distributed values in the range $[T_C, T_H]$. The contour values of stream function used here are taken to be the same as those in (Ghia et al., 1982). 203

6.10 Flow in a lid-driven open-cavity with a prescribed bottom wall motion: geometry and boundary conditions. 204

6.11 Flow in a lid-driven open-cavity with a stationary bottom wall: Grid convergence study of vertical and horizontal velocity profiles along the horizontal and vertical center lines, and static pressure distribution along the bottom wall for $Re = 200$. 206

6.12 Flow in a lid-driven open-cavity with a stationary bottom wall: contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow in the cavity for $Re = 200$, using a grid of 61×61. Each plot contains 50 contour levels varying linearly from the minimum value to the maximum value. 207

6.13 Strategy for spatial discretisation using 1D-IRBFN and LMLS-1D-IRBFN methods. 207

6.14 Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 1): static pressure at the mid-point of the bottom wall with respect to time t, using a Cartesian grid with a grid spacing of $1/60$. 208
6.15 Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 1): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow for several times \(t = 51.5, 52.0, 52.5 \) and 53.0s, from top to bottom, using a Cartesian grid with a grid spacing of 1/60.

6.16 Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 2): static pressure at the mid-point of the bottom wall with respect to time \(t \), using a Cartesian grid with a grid spacing of 1/60.

6.17 Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 2): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow for several times \(t = 51.5, 52.0, 52.5 \) and 53.0s, from top to bottom, using a Cartesian grid with a grid spacing of 1/60.

6.18 Forced vibration of a simply supported beam.

6.19 Forced vibration of a simply supported beam: steady state response of the mid-point of a simply supported beam, using a uniform grid of 61 and \(\Delta t = 0.1s \).

6.20 Flow in a lid-driven open-cavity with a simply supported flexible bottom wall: deflection of the mid-point of the bottom wall with respect to time \(t \) between two different approaches of predictors, using a Cartesian grid with a grid spacing of 1/60.

6.21 Flow in a lid-driven open-cavity with a flexible bottom wall: deflection of the mid-point of the clamped bottom wall with respect to time \(t \) in comparison with the case of simply supported bottom wall, using a Cartesian grid with a grid spacing of 1/60.
6.22 Flow in a lid-driven open-cavity with a simply supported flexible bottom wall (Case 1): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow at time $t = 92.5\text{s}$, using a Cartesian grid with a grid spacing of 1/60. Each plot contains 50 contour levels varying linearly from the minimum value to the maximum value. 217

6.23 Flow in a lid-driven open-cavity with a clamped flexible bottom wall (Case 2): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow at time $t = 92.5\text{s}$, using a Cartesian grid with a grid spacing of 1/60. Each plot contains 50 contour levels varying linearly from the minimum value to the maximum value. 217
Chapter 1

Introduction

This chapter starts with the motivation for the present research. Then, we presents an overview of the governing equations for fluid, structure and fluid-structure interaction (FSI). A review of numerical methods for solving fluid mechanics, solid mechanics and FSI problems is followed. Finally, the outline of the dissertation is described.

1.1 Motivation

Fluid-Structure Interaction (FSI) plays a central role in several engineering problems such as flow-induced vibration (Liew et al., 2007), aircraft wing flutter (Rendall and Allen, 2008), bridge flutter (Ge and Xiang, 2008), ocean wave energy extraction device (Agamloh et al., 2008), blood flow in heart valves (Vierendeels et al., 2005), design of helicopter rotors (Xiong and Yu, 2007), and sailing boat (Parolini and Quarteroni, 2005). Therefore, FSI is a very interesting topic and FSI analysis is the key for resolving those kinds of problems. FSI is also a challenge for numerical modelling.

So far, finite element method (FEM), finite difference method (FDM), finite vol-
1.1 Motivation

Volume method (FVM) have been usually used for analysis of FSI problems (Guruswamy and Byun, 1995; Garcia and Guruswamy, 1999; Vierendeels et al., 2005; Liew et al., 2007). However, the FEM, FDM and FVM have difficulties in handling fluid flow problems with free surface and moving boundary conditions (Liu, 2003). This research project is concerned with the development of a new numerical procedure that can handle FSI and moving boundary problems with ease and high accuracy. The proposed approach is based on (i) global one-dimensional integrated radial basis function network collocation method (1D-IRBFN) and (ii) local moving least square - one-dimensional integrated radial basis function network method (LMLS-1D-IRBFN). It is expected that the outcome of the project will be a more advanced approach for solving engineering problems involving FSI phenomena.

In the framework of continuum mechanics, fluid and solid behaviours are usually modelled by a set of partial differential equations (PDEs) and a set of boundary conditions. The governing equations for fluid flow are derived from the application of four basic laws (i) conservation of mass (continuity); (ii) conservation of momentum (Newton’s second law of motion); (iii) conservation of energy (first law of thermodynamics); and (iv) second law of thermodynamics. In addition, for each material, a constitutive law is required for closure. In the case of Newtonian fluids (e.g. water, air) under iso-thermal condition, the continuity equation, the momentum equation and the constitutive relation can be combined to obtain the well known Navier-Stokes equations. For solid mechanics problems, one has strain-displacement equations, motion equations and constitutive equations (stress-strain relations). To solve FSI problems, one needs to consider both the geometrical compatibility and the equilibrium conditions of the interfaces between fluid and structure domains. Structural behaviour presents complicated boundary conditions for fluid flow analysis, thus in some cases the boundaries are assumed to be rigid. Some FSI behaviours can converge to a steady state solution, others can be oscillatory or even unstable.
1.2 Governing equations for fluid, structure and fluid-structure interaction

Governing equations for structure

Let $R_s(t)$ be the spatial domain of a structure with the boundary $\partial R_s(t)$ at time t. Here, the subscript s stands for the structural component. Let x be a position vector of a point of a structure. The equilibrium equation for the structure is

$$\rho_s \frac{\partial^2 u_s}{\partial t^2} = \nabla \cdot \sigma_s + \rho_s f \quad \forall x \in R_s(t), \quad (1.1)$$

where ρ_s is the mass density of the structure; u_s the structural displacement vector; ∇ the vector differential operator; σ_s the stress tensor of the structure; and f the body force vector (measured per unit mass) acting on the structure.

The boundary conditions include

- Dirichlet boundary condition

$$u_s = u_B \quad \forall x \in \partial R_s^u, \quad (1.2)$$

- Neumann boundary condition

$$\sigma_s \cdot n = h_B \quad \forall x \in \partial R_s^h, \quad (1.3)$$

where ∂R_s^u and ∂R_s^h represent the parts of the boundary with prescribed displacements u_B and traction h_B, respectively; and n is the unit outward vector normal to the boundary ∂R_s^h at x.

Governing equations for fluid

In the present research, we limit the analysis to 2-D problems and the di-
1.2 Governing equations for fluid, structure and fluid-structure interaction

The 2-D Navier-Stokes equations of incompressible viscous flow can be written in terms of primitive variables is written in xy-Cartesian system as

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$
$$\rho_f \frac{\partial u}{\partial t} + \rho_f \frac{\partial u}{\partial x} + \rho_f \frac{\partial v}{\partial y} = -\frac{\partial P}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right],$$
$$\rho_f \frac{\partial v}{\partial t} + \rho_f \frac{\partial u}{\partial x} + \rho_f \frac{\partial v}{\partial y} = -\frac{\partial P}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right],$$

where u, v and p are velocity components and static pressure of the fluid, respectively; and ρ_f and μ the density and dynamic viscosity of the fluid, respectively.

The dimensionless form of the above system of equations is given by

$$\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0,$$
$$\frac{\partial U}{\partial t'} + \frac{\partial U^2}{\partial X} + \frac{\partial UV}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{1}{Re} \left[\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right],$$
$$\frac{\partial V}{\partial t'} + \frac{\partial UV}{\partial X} + \frac{\partial V^2}{\partial Y} = -\frac{\partial P}{\partial Y} + \frac{1}{Re} \left[\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right].$$

The non-dimensionalisation is as follows.

$$t' = \frac{t}{H/U_0}, \quad X = \frac{x}{H}, \quad Y = \frac{y}{H},$$
$$U = \frac{u}{U_0}, \quad V = \frac{v}{U_0}, \quad P = \frac{p}{\rho_f U_0^2},$$

where H is a characteristic length; and U_0 reference velocity. The Reynolds number is defined by $Re = U_0 H/\nu$, in which ν is the kinematic viscosity of the fluid ($\nu = \mu/\rho_f$).
in terms of stream function ψ and vorticity ω as follows.

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega, \quad (1.10)
\]

\[
\frac{1}{Re} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) = \frac{\partial \omega}{\partial t} + \left(\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} \right), \quad (1.11)
\]

where the x and y components of the velocity vector can be defined in terms of the stream function as

\[
u = \frac{\partial \psi}{\partial y}, \quad (1.12)
\]

\[
u = -\frac{\partial \psi}{\partial x}. \quad (1.13)
\]

Coupled equations for fluid-structure interaction

The geometrical compatibility conditions at the interface Γ between the fluid and structural domains are given by

\[
r^\Gamma_f(t) = u^\Gamma_s(t), \quad (1.14)
\]

\[
\dot{r}^\Gamma_f(t) = \dot{u}^\Gamma_s(t), \quad (1.15)
\]

where r^Γ_f and u^Γ_s are the displacement vectors of the fluid and structure at the interface Γ, respectively; and \dot{r}^Γ_f and \dot{u}^Γ_s the velocity vectors of the fluid and structure at the interface Γ, respectively.

The equilibrium conditions can be described as follows.

\[
h^\Gamma_f(t) + h^\Gamma_s(t) = 0, \quad (1.16)
\]

where h^Γ_f and h^Γ_s are the traction vectors acting on the fluid and structure at interface Γ, respectively.
1.3 A brief review of traditional numerical methods

Numerical simulation plays a crucial role in design and manufacturing of products in several fields such as aerospace, biomedical, civil, mechanical and electrical engineering. In general, due to the lack of analytical solutions to practical problems with irregular domains, complex material constitution and high nonlinearity, numerical methods become a useful alternative to find approximate solutions to these problems. By using numerical methods, one can investigate the effects of problem parameters on the behaviour of the products, which is much cheaper than using experiments for obtaining the same level of understanding. The fundamental concept of numerical methods is based on the approximation of the partial derivatives by algebraic expressions. After approximating the PDEs by algebraic equations, they can be solved numerically by using the aid of a computer. A brief review of some traditional numerical methods including finite difference method (FDM), finite volume method (FVM), finite element method (FEM) and boundary element method (BEM) is described as follows.

In FDMs, the spatial discretisation is performed in conjunction with structured grids, while FVMs and FEMs can be employed in conjunction with both structured and unstructured grids. The FDMs are most efficiently solved in rectangular domains with equal grid spacings. When dealing with nonrectangular domains, it is necessary to transform the nonrectangular physical domain into a rectangular computational domain with uniform grid spacings. The representations of the partial derivatives in the governing equations of the problem are obtained from Taylor series expansions at each grid point. Even if a coordinate transformation is available, when dealing with highly irregular domains using the FDMs, there can be some serious difficulties in accuracy and convergence of the solution. The reader is referred to (Roache, 1998; Hoffmann and Chiang, 2000) for more details.
In FVMs and FEMs, the original differential equations are integrated on the physical domain and then solved numerically. Therefore, the grid system for FVM and FEM are generated directly within the physical space. The physical domains can be discretised using structured and unstructured grids. The main advantage of the unstructured grid is that it can be used to easily discretise irregular and multiply-connected domains. Therefore, the FVMs and FEMs have advantages over the FDMs when dealing with complicated irregular domain problems. However, if the physical domain can be discretised into a smooth structured grid, FDMs could be a better choice owing to its efficiency over that of FVMs and FEMs.

FVM is a common approach for solving problems of fluid mechanics. The conservation laws of fluid motion can be expressed in either differential form or integral form. When using FVMs, the domain of interest is divided into small volumes, namely control volumes. Subsequently, the conservation laws in integral form are applied to these control volumes. For 2-D analysis, the Green’s theorem is applied to convert area integrals to line integrals. For 3-D analysis, the divergence theorem is used to convert volume integrals (that contain a divergence term) to surface integrals. These terms are then evaluated as fluxes at the surfaces of each control volume. The reader is referred to (Hoffmann and Chiang, 2000; Toro, 2009) for more details.

Historically, FEM was developed for solving solid mechanics problems. In recent decades, it has been extended for many other fields including fluid mechanics and heat transfer. In FEMs, the physical domain is represented as a collection of simple subdomains, called finite elements. The approximate forms of the solution over each element are constructed systematically by using variational (energy) method or weighted-residual methods (e.g., the collocation method, the least-square method, the Galerkin method, and the Petrov-Galerkin method). These functions, representing approximate problem solutions, are often algebraic polynomials that are derived using interpolation theory. Assembly of
elements is usually based on continuity of the solution and balance of internal fluxes. Once the governing equations have been discretised, the resulting set of linear algebraic equations is solved using a digital computer. The reader is referred to (Reddy, 2006) for more details.

In BEM, the governing partial differential equations are transformed into equivalent boundary integral equations by using the Green’s identities. The boundary of solution domain is represented by a set of boundary elements and the boundary integrals are approximated over the boundary elements. For linear problems, the dimensionality of the problem in BEM is reduced by one, which is considered as an advantage of the BEM over spatial domain methods such as FDM, FVM and FEM. However, while BEM is suitable for linear and mildly nonlinear problems, it does not work well with highly nonlinear problems. The reader is referred to (Tanner, 1985; Phan-Thien and Kim, 1994; Tran-Cong, 1989; Pozrikidis, 2002) for more details.

1.4 A brief review of structural, fluid and fluid-structure interaction analyses

It is highly desirable to develop an efficient numerical method to investigate and optimize the mechanical behaviour of composite structure instead of using experimental testing which is usually time-consuming and costly. Because of the limitations of analytical methods in practical applications, numerical methods are becoming the most effective tools to solve many industrial problems. Finite Element Method (FEM) is a powerful method used to solve most linear and nonlinear practical engineering problems in solid mechanics. However, FEM has some limitations which include time-consuming task of mesh generation, low accuracy when solving large deformation problems due to element distortions, difficulty in simulating problems with strain localization and shear band
1.4 A brief review of structural, fluid and fluid-structure interaction analyses

formation due to discontinuities that may not coincide with some of the original
nodal lines (Liu, 2003).

Grid or mesh based numerical methods such as FDM, FVM, and FEM have
been applied to solve various problems of computational fluid dynamics. These
methods are very useful to solve PDEs that govern the fluid flow problems.
While FDM (Chung, 2002) is suitable for problems with simple geometries,
FVM (Toro, 2009) and FEM (Reddy, 1993) are flexible in handling problems
with complex geometries and complicated boundary conditions. These methods
have achieved remarkable results and are currently the most popular methods
in numerical analyses of both fluid and solid mechanics. However, they have
limitations in dealing with several types of complicated problems. The draw-
backs have resulted from the use of meshes which can cause various difficulties
in handling problems with free surface and moving boundary.

Meshfree methods have great potential to overcome those challenges and have
become a major research focus for both solid and fluid mechanics problems
over the last few decades. Nayroles et al. (1992) introduced the diffuse element
method (DEM), a first meshless method using moving least square (MLS) ap-
proximations to construct the shape function. The finite element mesh is totally
unnecessary in this method. Belytschko et al. (1994) proposed an element-free
Galerkin (EFG) method based on the DEM with modifications in the implement-
ation to increase the accuracy and the rate of convergence. In their work, La-
grange multipliers were used to impose essential boundary conditions. Liu and
Gu (2001) developed a point interpolation method (PIM) to construct poly-
nomial interpolation functions with δ-function property so the essential boundary
conditions can be imposed with ease as done in the conventional FEM. However,
the problem of singular moment matrix can occur, resulting in termination of
the computation. A point interpolation method based on radial basis function
(RPIM) was proposed by Wang and Liu (2002) to produce a non-singular mo-
ment matrix. In the PIM and RPIM, the compatibility characteristics is not
ensured so the field function approximated could be discontinuous when nodes enter or leave the moving support domain. Liu et al. (2005) suggested a linearly conforming point interpolation method (LC-PIM) with a simple scheme for local supporting node selection, and a linearly conforming radial point interpolation method (LC-RPIM) (Liu et al., 2006) to overcome the singular moment matrix issue and ensure the compatibility of the displacement.

Meshfree methods can be categorised into two main groups with respect to their approximation techniques. Group one methods are based on strong form formulation such as the meshfree collocation method in which the numerical solution satisfies the governing equation at the collocation points (Mai-Duy and Tran-Cong, 2009b; Le-Cao et al., 2009). The other group consists of weak-form methods based on an integration technique in which the final numerical equations are generated by substituting the approximation functions into a Galerkin integration equation. This formulation can produce a stable system of algebraic equations and gives a discretised system of equations that yields much more accurate results (Mai-Duy and Tran-Cong, 2009a; Ho-Minh et al., 2009). However, the major drawback of weak-form methods is highly expensive computational cost due to the numerical integration.

In the fluid-structure interaction (FSI) analysis, a coupling strategy to satisfy both the geometrical compatibility and the equilibrium conditions of the interface is a key issue. There are two main approaches for solving FSI problems, namely monolithic methods (Rugonyi and Bathe, 2001; Heil, 2004; Liew et al., 2007) and partitioned methods (Farhat and Lesoinne, 1998; Piperno, 1997). Partitioned procedures are usually preferred when the interaction between the fluid and the structure is weak while the monolithic solution procedure is chosen to be effective for solving problems with a strong FSI dependence. In the monolithic approach, the fluid and structural equations are tightly coupled and solved simultaneously. This approach may lead to two drawbacks (i) an increase in the number of degrees of freedom (DOFs) and (ii) an ill-conditioned system
matrix. In the partitioned approach, the fluid and structure fields are solved separately and the solution variables are transferred at the interface. By using this approach, it is flexible to choose different solvers for each field. However, the approach introduces a time delay which translates as non-physical energy dissipation (Farhat and Lesoinne, 1998).

1.5 Radial basis function networks

Kansa (1990a) proposed a collocation scheme based on multiquadric (MQ) radial basis functions (RBF) for the numerical solution of PDEs. Their numerical results showed that MQ scheme yielded an excellent interpolation and partial derivative estimates for a variety of two-dimensional functions over both gridded and scattered data. The main drawback of RBF-based methods is the lack of mathematical theories for finding the appropriate values of network parameters. For example, the RBF width, which strongly affects the performance of RBF networks, has still been chosen either by empirical approaches or by optimization techniques. Kansa’s approach is here referred to as the conventional differentiated radial basis function network (DRBFN) method. Radial basis function networks (RBFN) are capable of universal approximation based on meshfree discretisation (Park and Sandberg, 1991). Approximants based on some RBFs such as multiquadric and Gaussian functions can offer an exponential rate of convergence (Madych and Nelson, 1989).

In contrast to the advantages of no mesh generation, global meshfree methods are not suitable for simulating large-scale problems because they produce very dense system matrices (Zerroukat et al., 2000; Šarler and Perko, 2004). Sparse system matrices can be generated by the use of compactly supported RBFs (Wendland, 1995), and the accuracy of such an approach can be improved by a multilevel technique (Chen et al., 2002). Atluri and Zhu (1998) presented a meshless local Petrov-Galerkin (MLPG) approach based on a local
symmetric weak form and the MLS approximation, which is a truly meshless method. One of the possible ways to avoid the fully dense matrix problem is to employ a domain decomposition technique (Mai-Duy and Tran-Cong, 2002). Lee et al. (2003) proposed local multiquadric (LMQ) and local inverse multiquadric (LIMQ) approximation methods for solving boundary value problems. Their numerical results indicated that the methods are highly efficient and able to yield accurate solutions for a wide range of values of the RBF width. Wright and Fornberg (2006) presented local RBF-based finite difference schemes for solving differential equations. Sarler and Vertnik (2006) presented an explicit local RBF collocation method for diffusion problems. The method appeared efficient, because it does not require a solution of a large system of equations like the original RBF collocation method (Kansa, 1990b). Divo and Kassab (2007) developed a localized RBF meshless method for a solution of coupled viscous fluid flow and conjugate heat transfer problems. In their work, a domain decomposition technique is used to accelerate the computation speed by distributing the computational load over multiple processors. Stevens, Power and Morvan (2009) proposed a local Hermitian interpolation (LHI) method for steady and unsteady solutions of linear convection-diffusion-reaction problems. The method was then extended by using interpolation functions which themselves satisfy the governing equations, resulting in an improvement of the solution accuracy (Stevens, Power, Lees and Morvan, 2009).

As an alternative to the DRBFN, Mai-Duy and Tran-Cong (2001a) proposed the use of integration to construct the RBFN expressions (the IRBFN method) for the approximation of a function and its derivatives and for the solution of PDEs. The use of integration instead of conventional differentiation to construct the RBF approximations significantly improved the stability and accuracy of the numerical solution. The improvement is attributable to the fact that integration is a smoothing operation and is more numerically stable. The numerical results showed that the IRBFN method achieves superior accuracy (Mai-Duy and Tran-Cong, 2001a, 2003a). A one-dimensional integrated radial basis func-
1.6 Discussion and objectives of the present research

From the literature review above, it can be seen that FEM has limitations when handling structural analysis problems with large deformation due to element distortions. Meshfree and Cartesian-based methods have great capabilities to overcome these problems. The 1D-IRBFN method with the use of integration instead of conventional differentiation to construct the RBF approximations significantly improved the accuracy and stability of numerical solution. The method is employed to perform structural analyses in the present research (Ngo-Cong et al., 2011).

Babuška and Melenk (1997) presented the partition of unity method (PUM) with attractive features. In the PUM, if analytic knowledge about the local behaviour of the problem solution is known, local approximation can be done with functions better suited than polynomials as in the classical FEM. In this research, the PU concept is employed as a framework to incorporate MLS and 1D-IRBFN techniques in an approach, namely local MLS-1D-IRBFN or LMLS-1D-IRBFN. The approximation is locally supported, which leads to sparse system matrices and requires less computational effort than the case of using 1D-IRBFN method alone, while the order of accuracy remains high as in the case of 1D-IRBFN. Unlike conventional MLS-based methods, the LMLS-1D-
IRBFN shape functions satisfy the Kronecker-δ property and thus the essential boundary conditions can be imposed in an exact manner. Therefore, the proposed method can be used to solve large-scale problems with less computational effort and high accuracy.

In the literature, different strategies have been proposed to simulate FSI, and the selection of the most effective method strongly depends on the characteristics of the given problem. In this study, a numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods in conjunction with a sequentially staggered algorithm is developed for solving FSI problems.

In short, we propose the 1D-IRBFN, local MLS-1D-IRBFN methods and a novel numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods for an accurate and efficient solution to solid mechanics, fluid mechanics and FSI problems. The high level of accuracy and efficiency are achieved by means of the following main characteristics.

- RBF network is a high-order approximation.

- The use of integration instead of conventional differentiation to construct the RBF approximations significantly improves the stability and accuracy of the numerical solution. The improvement is attributable to the fact that integration is a smoothing operation and is more numerically stable.

- The constants of integration in the IRBF formulation are used for the purpose of imposing Neumann boundary conditions in an exact manner.

- Cartesian grids are used to discretise the problem domains. It is clear that generating a Cartesian grid is much simpler and easier than generating a finite element mesh.

- The local MLS-1D-IRBFN approximation is locally supported, which leads to sparse system matrices and requires less computational effort than the
1.7 Outline of the present research

In this dissertation, each chapter is structured in a self-explanatory manner as follows.

Chapter 2 presents a 1D-IRBFN collocation technique for the free vibration analysis of laminated composite plates using the first order shear deformation theory. The rectangular and non-rectangular plates are simply discretised by means of Cartesian grids. A number of examples concerning various thickness-to-span ratios, material properties and boundary conditions are considered.

Chapter 3 reports a novel local moving least square - one-dimensional integrated radial basis function network (LMLS-1D-IRBFN) method for solving incompressible viscous flow problems using stream function-vorticity formulation. The LMLS-1D-IRBFN method yields the same level of accuracy as that of the 1D-IRBFN method while reduces the computational cost significantly owing to its banded sparse system matrix. The proposed method is verified through problems of flow in a lid-driven cavity and steady flow past a circular cylinder.

Chapter 4 reports the LMLS-1D-IRBFN method for multiply-connected-domain problems. The proposed numerical procedure is verified through simulations of natural convection flows in concentric and eccentric annuli in terms of stream...
1.7 Outline of the present research

function, vorticity and temperature. The stream function value on the inner boundary of the eccentric annulus is unknown and determined by using the single-valued pressure condition (Lewis, 1979).

Chapter 5 presents a further development of the LMLS-1D-IRBFN method for a solution of time-dependent problems such as Burgers’ equation, unsteady flow past a square cylinder in a horizontal channel and unsteady flow past a circular cylinder. The present numerical method is combined with a domain decomposition technique to handle large-scale problems. Flow parameters such as drag coefficient, length of recirculation zone, Strouhal number and the effect of blockage ratio on the behaviour of the flow field behind the cylinder are investigated.

Chapter 6 presents a new numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods for fluid-structure interaction analysis. A combination of Chorin’s method and pseudo-time subiterative technique is presented for a transient solution of 2-D incompressible viscous Navier-Stokes equations in terms of primitive variables. The fluid solver is first verified through a solution of mixed convection in a lid-driven cavity with a hot lid and a cold bottom wall. The structural solver is verified with an analytical solution of forced vibration of a beam. The FSI numerical procedure is then applied to simulate flows in a lid-driven open-cavity with a flexible bottom wall.

Chapter 7 gives some concluding remarks from the present research.
Chapter 2

1D-IRBFN method for free vibration of laminated composite plates

This chapter presents an effective radial basis function (RBF) collocation technique for free vibration analysis of laminated composite plates using the first order shear deformation theory (FSDT). The plates, which can be rectangular or non-rectangular, are simply discretised by means of Cartesian grids. Instead of using conventional differentiated RBF networks, one-dimensional integrated RBF networks (1D-IRBFN) are employed on grid lines to approximate the field variables. Several examples are chosen to investigate the effect of thickness-to-span ratios, material properties and boundary conditions. Results obtained are compared with available analytical solutions and numerical results by other techniques in the literature to assess the performance of the proposed method. In Chapters 3-5 we will report methods for fluid flows and finally in Chapter 6 the combination of methods developed in Chapters 2-5 in a new approach for FSI analysis is demonstrated.
2.1 Introduction

Free vibration analysis of laminated composite plates has been an important problem in the design of mechanical, civil and aerospace applications. Vibration can waste energy and create unwanted noise in the motions of engines, motors, or any mechanical devices in operation. When a system operates at the system natural frequency, resonance can happen causing large deformations and even catastrophic failure in improperly constructed structures. Careful designs can minimize those unwanted vibrations.

The lamination scheme and material properties of individual lamina provide an added flexibility to designers to tailor the stiffness and strength of composite laminates to match the structural requirements. The significant difference between the classical plate theory (CLPT) and the first order shear deformation theory (FSDT) is the effect of including transverse shear deformation on the predicted deflections and frequencies. The CLPT underpredicts deflections and overpredicts frequencies for plates with thickness-to-length ratios larger than 0.05 (Reddy, 2004) while the FSDT has been the most commonly used in the vibration analysis of moderately thick composite plates with thickness-to-length ratio less than 0.2 (Noor and Burton, 1973). The FSDT is an approximate theory with some assumptions on the deformation of a plate which reduce the dimensions of the plate problem from three to two and greatly simplify the governing equations. However, these assumptions inherently result in errors which can be significant when the thickness-to-length ratio increases.

Using the theory of elasticity, Srinivas and Rao (1970) developed an exact three-dimensional (3-D) solution for bending, vibration and buckling of simply supported thick orthotropic rectangular plates. Their results have been widely used as benchmark solutions by many researchers. Liew et al. (1993) developed a continuum 3-D Ritz formulation based on the 3-D elasticity theory and the Ritz minimum energy principle for the vibration analysis of homogeneous,
2.1 Introduction

thick, rectangular plates with arbitrary combination of boundary constraints. The formulation was employed to study the effects of geometric parameters on the overall normal mode characteristics of simply supported plates, and the effects of in-plane inertia on the vibration frequencies of plates with different thicknesses (Liew et al., 1994). This formulation was also applied specifically to investigate the effects of boundary constraints and thickness ratios on the vibration responses of plates (Liew et al., 1995). Liew and Teo (1999) employed the differential quadrature (DQ) method for the vibration analysis of 3-D elasticity plates with a high degree of accuracy.

When dealing with highly orthotropic composite plates, the higher-order shear deformation theories (HSDT) is more favourable than the FSDT because the former can yield highly accurate results without the need for a shear correction factor. Reddy and Phan (1985) employed the HSDT (Reddy, 1984) to determine the natural frequencies and buckling loads of elastic plates. Their exact solutions obtained were more accurate than those of the FSDT and CLPT when compared with the exact solutions by 3-D elasticity theory. Lim et al. (1998a,b) developed an energy-based higher-order plate theory in association with geometrically oriented shape function to investigate the free vibration of thick shear deformable, rectangular plates with arbitrary combinations of boundary constraints. This method required considerably less memory than the direct 3-D elasticity analysis while maintaining the same level of accuracy. Their numerical results showed that for transverse-dominant vibration modes, an increase in thickness results in higher frequency while for inplane-dominant vibration modes, the effects of variation in thickness is insignificant.

Finite element method (FEM) is a powerful method used to solve most linear and nonlinear practical engineering problems in solid and fluid mechanics. However, FEM has some limitations which include time-consuming task of mesh generation, low accuracy when solving large deformation problems due to element distortions, difficulty in simulating problems with strain localization and
shear band formation due to discontinuities that may not coincide with some of the original nodal lines (Liu, 2003). Meshless method has great potential to overcome those challenges. Nayroles et al. (1992) introduced the diffuse element method (DEM), a first meshless method using moving least square (MLS) approximations to construct the shape function. The finite element mesh is totally unnecessary in this method. Belytschko et al. (1994) proposed an element-free Galerkin (EFG) method based on the DEM with modifications in the implementation to increase the accuracy and the rate of convergence. Liu and Gu (2001) developed a point interpolation method (PIM) to construct polynomial interpolation functions with delta function property so the essential boundary conditions can be imposed as done in the conventional FEM with ease. Liew and Chen (2004) and Liew, Chen and Reddy (2004) proposed a numerical algorithm based on the RPIM for the buckling analysis of rectangular, circular, trapezoidal and skew Mindlin plates that are subjected to non-uniformly distributed in-plane edge loads.

In 1990, Kansa proposed a collocation scheme based on multiquadric (MQ) radial basis functions for the numerical solution of partial differential equations (PDEs) (Kansa, 1990a,b). Their numerical results showed that MQ scheme yielded an excellent interpolation and partial derivative estimates for a variety of two-dimensional functions over both gridded and scattered data. The main drawback of RBF based methods is the lack of mathematical theories for finding the appropriate values of network parameters. For example, the RBF width, which strongly affects the performance of RBF networks, has still been chosen either by empirical approaches or by optimization techniques. The use of RBF based method for the free vibration analysis of laminated composite plates has been previously studied by numerous authors. The MQ-RBF procedure was used to predict the free vibration behaviour of moderately thick symmetrically laminated composite plates by Ferreira et al. (2005). The free vibration analysis of Timoshenko beams and Mindlin plates using Kansa’s non-symmetric RBF collocation method was performed by Ferreira and Fasshauer
2.1 Introduction

(2005). Ferreira and Fasshauer (2007) showed that the combination of RBF and pseudospectral methods produces highly accurate results for free vibration analysis of symmetric composite plates. Liew (1996) proposed a p-Ritz method with high accuracy, but, it is difficult to choose the appropriate trial functions for complicated problems. Karunasena et al. (1996) and Karunasena and Kittipornchai (1997) investigated natural frequencies of thick arbitrary quadrilateral plates and shear-deformable general triangular plates with arbitrary combinations of boundary conditions using the pb-2 Rayleigh-Ritz method in conjunction with the FSDT. Liew et al. (2002) proposed the harmonic reproducing kernel particle method for the free vibration analysis of rotating cylindrical shells. This technique provides ease of enforcing various types of boundary conditions and concurrently is able to capture the travelling modes. Zhao et al. (2004) employed the reproducing kernel particle estimation in hybridized form with harmonic functions to study the frequency characteristics of cylindrical panels. Liew, Wang, Tan and Rajendran (2004) presented a meshfree kernel particle Ritz method (kp-Ritz) for the geometrically nonlinear analysis of laminated composite plates with large deformations, which is based on the FSDT and the total Lagrangian formulation. Liew et al. (2003) adopted a moving least squares differential quadrature (MLSDQ) method for predicting the free vibration behaviour of square, circular and skew plates with various boundary conditions. A meshfree method based on the reproducing kernel particle approximate for the free vibration and buckling analyses of shear-deformation plates was conducted by Liew, Wang, Ng and Tan (2004). In this method, the essential boundary conditions were enforced by a transformation technique.

As an alternative to the conventional differentiated radial basis function network (DRBFN) method Kansa (1990b), Mai-Duy and Tran-Cong (2001b) proposed the use of integration to construct the RBFN expressions (the IRBFN method) for the approximation of a function and its derivatives and for the solution of PDEs. The use of integration instead of conventional differentiation to construct the RBF approximations significantly improved the stability and accuracy of
the numerical solution. The improvement is attributable to the fact that integration is a smoothing operation and is more numerically stable. The numerical results showed that the IRBFN method achieves superior accuracy (Mai-Duy and Tran-Cong, 2001b, 2003a). Mai-Duy and Tran-Cong (2003b) presented a mesh-free IRBFN method using Thin Plate Splines (TPSs) for numerical solution of differential equations (DEs) in rectangular and curvilinear coordinates. The IRBFN was also used to simulate the static analysis of moderately-thick laminated composite plates using the FSDT (Mai-Duy et al., 2007).

A one-dimensional integrated radial basis function network (1D-IRBFN) collocation method for the solution of second- and fourth-order PDEs was presented by Mai-Duy and Tanner (2007). Along grid lines, 1D-IRBFN are constructed to satisfy the governing DEs together with boundary conditions in an exact manner. The 1D-IRBFN method was further developed for the simulation of fluid flow problems. In the present chapter, the 1D-IRBFN method is extended to the case of free vibration of composite laminates based on FSDT. A number of examples are considered to investigate the effects of various plate shapes, length-to-width ratios, thickness-to-span ratios, material properties and boundary conditions on natural frequencies of composite laminated plates. The results obtained are compared with available published results from different methods.

The chapter is organised as follows. Section 2.2 describes the governing equations based on FSDT and boundary conditions for the free vibration of laminated composite plates. The 1D-IRBFN-based Cartesian-grid technique is presented in Section 2.3. The discretisation of the governing equations and boundary conditions is described in Section 2.4. The proposed technique is then validated through several test examples in Section 2.5. Section 2.6 concludes the chapter.
2.2 Governing equations

2.2.1 First-order shear deformation theory

In the FSDT (Reddy, 2004), the transverse normals do not remain perpendicular to the mid-surface after deformation due to the effects of transverse shear strains. The inextensibility of transverse normals requires \(w \) not to be a function of the thickness coordinate \(z \). The displacement field of the FSDT at time \(t \) is of the form

\[
\begin{align*}
 u(x, y, z, t) &= u_0(x, y, t) + z\phi_x(x, y, t), \\
 v(x, y, z, t) &= v_0(x, y, t) + z\phi_y(x, y, t), \\
 w(x, y, z, t) &= w_0(x, y, t),
\end{align*}
\]

where \((x, y, z)\) denotes the vector of problem coordinate; \((u_0, v_0, w_0)\) the vector of displacement of a point on the plane \(z = 0 \); and \(\phi_x \) and \(\phi_y \) are, respectively, the rotations of a transverse normal about the \(y \)- and \(x \)-axes.

Since the transverse shear strains are assumed to be constant through the laminate thickness, it follows that the transverse shear stresses will also be constant. However, in practice, the transverse shear stresses vary at least quadratically through layer thickness. This discrepancy between the actual stress state and the constant stress state predicted by the FSDT is often corrected by a parameter \(K_s \), called the shear correction coefficient. It is noted that the natural frequencies of the plate are affected by the factor \(K_s \) and the rotary inertia (RI). The smaller the values of \(K_s \) and RI, the smaller the frequencies will be.

In this chapter we consider a symmetrically laminated plate with the coordinate system origined at the midplane of the laminate, where each layer of the laminate is orthotropic with respect to the \(x \)- and \(y \)-axes and all layers are of equal thickness. For symmetric laminates, the displacements \(u_0 \) and \(v_0 \) can be disregarded due to the uncoupling between extension and bending actions.
The equations of motion for the free vibration of symmetric cross-ply laminated plates can be expressed by the dynamic version of the principle of virtual displacements as

\[K_s A_{55} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial \phi_x}{\partial x} \right) + K_s A_{44} \left(\frac{\partial^2 w}{\partial y^2} + \frac{\partial \phi_y}{\partial y} \right) = I_0 \frac{\partial^2 w}{\partial t^2}, \]
\[\tag{2.4} \]

\[D_{11} \frac{\partial^2 w}{\partial x^2} + D_{12} \frac{\partial^2 \phi_y}{\partial x \partial y} + D_{66} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^2 \phi_y}{\partial x \partial y} \right) - K_s A_{55} \left(\frac{\partial w}{\partial x} + \phi_x \right) = I_2 \frac{\partial^2 \phi_y}{\partial t^2}, \]
\[\tag{2.5} \]

\[D_{66} \left(\frac{\partial^2 \phi_x}{\partial x \partial y} + \frac{\partial^2 \phi_x}{\partial x^2} \right) + D_{12} \frac{\partial^2 \phi_x}{\partial y^2} + D_{22} \frac{\partial^2 \phi_y}{\partial y^2} - K_s A_{44} \left(\frac{\partial w}{\partial y} + \phi_y \right) = I_2 \frac{\partial^2 \phi_y}{\partial t^2}, \]
\[\tag{2.6} \]

where \(I_0 \) and \(I_2 \) are the mass inertia tensor components defined as

\[I_0 = \rho h, \]
\[\tag{2.7} \]

\[I_2 = \frac{\rho h^3}{12}, \]
\[\tag{2.8} \]

in which \(\rho \) and \(h \) denote the density and the total thickness of the composite plate, respectively; and \(A_{ij} \) and \(D_{ij} \) are the extensional and bending stiffnesses given by

\[A_{ij} = \sum_{k=1}^{N} \bar{Q}_{ij}^{(k)} (z_{k+1} - z_k), \]
\[\tag{2.9} \]

\[D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \bar{Q}_{ij}^{(k)} (z_{k+1}^3 - z_k^3), \]
\[\tag{2.10} \]

in which \(\bar{Q}_{ij}^{(k)} \) is the transformed material plane stress-reduced stiffness matrix of the layer \(k \).

Let \((x_1, x_2, x_3) \) be the principal material coordinates of a typical layer in the laminate. The \(x_1 \)-axis is taken to be parallel to the fibre, the \(x_2 \)-axis transverse to the fibre direction in the plane of the lamina, and the \(x_3 \)-axis is perpendicular to the plane of the lamina. In (2.9) and (2.10), the matrix \(\bar{Q}_{ij}^{(k)} \) can be obtained
through

\[\mathbf{\bar{Q}} = \mathbf{TQ}_m \mathbf{T}^T, \] \hfill (2.11)

where \(\mathbf{T} \) is the transformation matrix given by

\[
\mathbf{T} = \begin{bmatrix}
\cos^2 \theta & \sin^2 \theta & 0 & 0 & -\sin 2\theta \\
\sin^2 \theta & \cos^2 \theta & 0 & 0 & \sin 2\theta \\
0 & 0 & \cos \theta & \sin \theta & 0 \\
0 & 0 & -\sin \theta & \cos \theta & 0 \\
\sin \theta \cos \theta & -\sin \theta \cos \theta & 0 & 0 & \cos^2 \theta - \sin^2 \theta
\end{bmatrix}; \hfill (2.12)
\]

and \(\mathbf{Q}_m \) is the material plane stress-reduced stiffness

\[
\mathbf{Q}_m = \begin{bmatrix}
\frac{E_1}{(1 - \nu_{12} \nu_{21})} & \nu_{12} \frac{E_2}{(1 - \nu_{12} \nu_{21})} & 0 & 0 & 0 \\
\nu_{12} \frac{E_2}{(1 - \nu_{12} \nu_{21})} & \frac{E_2}{(1 - \nu_{12} \nu_{21})} & 0 & 0 & 0 \\
0 & 0 & G_{23} & 0 & 0 \\
0 & 0 & 0 & G_{13} & 0 \\
0 & 0 & 0 & 0 & G_{12}
\end{bmatrix}, \hfill (2.13)
\]

in which \(\theta \) is the angle measured from the global \(x \)-axis to the fibre direction which is positive if measured clockwise, and negative if measured anti-clockwise; \(E_1 \) and \(E_2 \) the Young’s moduli for a layer parallel to fibres and perpendicular to fibres, respectively; \(\nu_{12} \) and \(\nu_{21} \) Poisson’s ratios; and \(G_{23}, G_{13}, \) and \(G_{12} \) shear moduli in the \(x_2x_3, x_1x_3, \) and \(x_1x_2 \) planes, respectively.

Expressing the variables \(w, \phi_x, \) and \(\phi_y \) in the following harmonic forms

\[
w(x, y, t) = W(x, y)e^{i\omega t}, \hfill (2.14)
\]
\[
\phi_x(x, y, t) = \Psi_x(x, y)e^{i\omega t}, \hfill (2.15)
\]
\[
\phi_y(x, y, t) = \Psi_y(x, y)e^{i\omega t}. \hfill (2.16)
\]
2.2 Governing equations

the equations of motion (2.4)-(2.6) become

\[K_s A_{55} \left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial \Psi_x}{\partial x} \right) + K_s A_{44} \left(\frac{\partial^2 W}{\partial y^2} + \frac{\partial \Psi_y}{\partial y} \right) = -I_0 \omega^2 W, \]

(2.17)

\[D_{11} \frac{\partial^2 W}{\partial x^2} + D_{12} \frac{\partial^2 \Psi_y}{\partial x \partial y} + D_{66} \left(\frac{\partial^2 \Psi_x}{\partial y^2} + \frac{\partial^2 \Psi_y}{\partial x \partial y} \right) - K_s A_{55} \left(\frac{\partial W}{\partial x} + \Psi_x \right) = -I_2 \omega^2 \Psi_x, \]

(2.18)

\[D_{66} \left(\frac{\partial^2 \Psi_x}{\partial x \partial y} + \frac{\partial^2 \Psi_y}{\partial x^2} \right) + D_{12} \frac{\partial^2 \Psi_x}{\partial y^2} + D_{22} \frac{\partial^2 \Psi_y}{\partial y^2} - K_s A_{44} \left(\frac{\partial W}{\partial y} + \Psi_y \right) = -I_2 \omega^2 \Psi_y, \]

(2.19)

where \(\omega \) is the frequency of natural vibration.

2.2.2 Boundary conditions

The boundary conditions for a simply supported or clamped edge can be described as follows.

- Simply supported case: There are two kinds of simply support boundary conditions for the FSDT plate models.
 - The first kind is the soft simple support (SS1)
 \[w = 0; \ M_{rs} = 0; \ M_n = 0. \]
 (2.20)
 - The second kind is the hard simple support (SS2)
 \[w = 0; \ \phi_s = 0; \ M_n = 0. \]
 (2.21)

The hard simple support is considered in this chapter. From (2.21), we
2.2 Governing equations

have the following relations

\[w = 0, \quad \text{on } \Gamma, \quad (2.22) \]

\[n_x \phi_y - n_y \phi_x = 0, \quad \text{on } \Gamma, \quad (2.23) \]

\[n_x^2 M_{xx} + 2 n_x n_y M_{xy} + n_y^2 M_y = 0, \quad \text{on } \Gamma, \quad (2.24) \]

in which \(n_x \) and \(n_y \) are the direction cosines of a unit normal vector at a point on the plate boundary \(\Gamma \).

Equation (2.24) can be expressed as

\[
(n_x^2 D_{11} + n_y^2 D_{12}) \frac{\partial \phi_x}{\partial x} + 2 n_x n_y D_{66} \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x} \right) + (n_x^2 D_{12} + n_y^2 D_{22}) \frac{\partial \phi_y}{\partial y} = 0. \quad (2.25)
\]

- Clamped case:

\[w = 0; \ \phi_n = 0; \ \phi_s = 0. \quad (2.26) \]

Clamped boundary conditions (2.26) can be described as follows.

\[w = 0, \quad \text{on } \Gamma, \quad (2.27) \]

\[\phi_x = 0, \quad \text{on } \Gamma, \quad (2.28) \]

\[\phi_y = 0, \quad \text{on } \Gamma. \quad (2.29) \]

In (2.20), (2.21) and (2.26), the \(n \) and \(s \) represent the normal and tangential directions of the edge, respectively; \(M_n \) and \(M_{ns} \) denote the normal bending moment and twisting moment, respectively; and \(\phi_n \) and \(\phi_s \) are rotations about the tangential and normal coordinates on the laminate edge.
2.3 One-dimensional indirect/integrated radial basis function networks

In the remainder of the chapter, we use

- the notation \(\hat{\[\] \} \) for a vector/matrix \(\[\] \) that is associated with a grid line,
- the notation \(\tilde{\[\] \} \) for a vector/matrix \(\[\] \) that is associated with the whole set of grid lines,
- the notation \(\[\]_{(\eta,\theta)} \) to denote selected rows \(\eta \) and columns \(\theta \) of the matrix \(\[\] \),
- the notation \(\[\]_{(\eta)} \) to denote selected components \(\eta \) of the vector \(\[\] \),
- the notation \(\[\]_{(:\theta)} \) to denote all rows and selected columns \(\theta \) of the matrix \(\[\] \), and
- the notation \(\[\]_{(\eta,:)} \) to denote all columns and selected rows \(\eta \) of the matrix \(\[\] \).

The domain of interest is discretised using a Cartesian grid, i.e. an array of straight lines that run parallel to the \(x \)- and \(y \)-axes. The dependent variable \(u \) and its derivatives on each grid line are approximated using an IRBF interpolation scheme as described in the remainder of this section.

2.3.1 IRBFN expressions on a grid line (1D-IRBFN scheme)

Consider an \(x \)-grid line, e.g. \([j]\), as shown in Figure 2.1. The variation of \(u \) along this line is sought in the IRBF form. The second-order derivative of \(u \) is decomposed into RBFs; the RBF network is then integrated once and twice
to obtain the expressions for the first-order derivative of \(u \) and the solution \(u \) itself,

\[
\frac{\partial^2 u(x)}{\partial x^2} = \sum_{i=1}^{N_{[j]}^x} w^{(i)} G^{(i)}(x) = \sum_{i=1}^{N_{[j]}^x} u^{(i)} H_{[2]}^{(i)}(x),
\]

(2.30)

\[
\frac{\partial u(x)}{\partial x} = \sum_{i=1}^{N_{[j]}^x} w^{(i)} H_{[1]}^{(i)}(x) + c_1,
\]

(2.31)

\[
u(x) = \sum_{i=1}^{N_{[j]}^x} w^{(i)} H_{[0]}^{(i)}(x) + c_1 x + c_2,
\]

(2.32)

where \(N_{[j]}^x \) is the number of nodes on the grid line \([j]; \{w^{(i)}\}_{i=1}^{N_{[j]}^x} \) RBF weights to be determined; \(\{G^{(i)}(x)\}_{i=1}^{N_{[j]}^x} = \{H_{[2]}^{(i)}(x)\}_{i=1}^{N_{[j]}^x} \) known RBFS; \(H_{[1]}^{(i)}(x) = \int H_{[2]}^{(i)}(x) dx; \)

\(H_{[0]}^{(i)}(x) = \int H_{[1]}^{(i)}(x) dx; \) and \(c_1 \) and \(c_2 \) integration constants which are also unknown. An example of RBF, used in this work, is the multiquadrics

\[
G^{(i)}(x) = \sqrt{(x - x^{(i)})^2 + a^{(i)^2}}, \]

- the RBF width determined as \(a^{(i)} = \beta d^{(i)}, \beta \) a positive factor, and \(d^{(i)} \) the distance from the \(i^{th} \) center to its nearest neighbour.

![Figure 2.1: Cartesian grid.](image)

It is more convenient to work in the physical space than in the network-weight space. The RBF coefficients including two integration constants can be trans-
formed into the physically meaningful nodal variable values through the following relation

\[\hat{\mathbf{u}} = \hat{\mathbf{H}} \begin{pmatrix} \hat{\mathbf{w}} \\ \hat{\mathbf{c}} \end{pmatrix}, \tag{2.33} \]

where \(\hat{\mathbf{H}} \) is an \(N_x^{[j]} \times (N_x^{[j]} + 2) \) matrix and defined by

\[
\hat{\mathbf{H}} = \begin{bmatrix}
H^{[1]}_0(x^{(1)}) & H^{[2]}_0(x^{(1)}) & \ldots & H^{[N_x^{[j]}]}_0(x^{(1)}) & x^{(1)} & 1 \\
H^{[1]}_0(x^{(2)}) & H^{[2]}_0(x^{(2)}) & \ldots & H^{[N_x^{[j]}]}_0(x^{(2)}) & x^{(2)} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
H^{[1]}_0(x^{(N_x^{[j]})}) & H^{[2]}_0(x^{(N_x^{[j]})}) & \ldots & H^{[N_x^{[j]}]}_0(x^{(N_x^{[j]})}) & x^{(N_x^{[j]})} & 1
\end{bmatrix};
\]

\[\hat{\mathbf{u}} = (u^{(1)}, u^{(2)}, \ldots, u^{(N_x^{[j]})})^T; \quad \hat{\mathbf{w}} = (w^{(1)}, w^{(2)}, \ldots, w^{(N_x^{[j]})})^T \quad \text{and} \quad \hat{\mathbf{c}} = (c_1, c_2)^T. \]

There are two possible transformation cases.

Non-square conversion matrix (NSCM): The direct use of (2.33) leads to an underdetermined system of equations

\[\hat{\mathbf{u}} = \hat{\mathbf{H}} \begin{pmatrix} \hat{\mathbf{w}} \\ \hat{\mathbf{c}} \end{pmatrix} = \hat{\mathbf{C}} \begin{pmatrix} \hat{\mathbf{w}} \\ \hat{\mathbf{c}} \end{pmatrix}, \tag{2.34} \]

or

\[\begin{pmatrix} \hat{\mathbf{w}} \\ \hat{\mathbf{c}} \end{pmatrix} = \hat{\mathbf{C}}^{-1} \hat{\mathbf{u}}, \tag{2.35} \]

where \(\hat{\mathbf{C}} = \hat{\mathbf{H}} \) is the conversion matrix whose inverse can be found using the singular value decomposition (SVD) technique.

Square conversion matrix (SCM): Due to the presence of \(c_1 \) and \(c_2 \), one can add
two additional equations of the form

\[
\hat{f} = \mathbf{K} \begin{pmatrix} \hat{w} \\ \hat{c} \end{pmatrix}
\]

(2.36)

to equation system (2.34). For example, in the case of Neumann boundary conditions, this subsystem can be used to impose derivative boundary values

\[
\hat{f} = \begin{pmatrix} \frac{\partial u(x^{(1)})}{\partial x} \\ \frac{\partial u(x^{(N_j^p)})}{\partial x} \end{pmatrix},
\]

(2.37)

\[
\hat{K} = \begin{bmatrix}
H_{[1]}^{(1)}(x^{(1)}) & H_{[1]}^{(2)}(x^{(1)}) & \ldots & H_{[1]}^{(N_j^p)}(x^{(1)}) & 1 & 0 \\
H_{[1]}^{(1)}(x^{(N_j^p)}) & H_{[1]}^{(2)}(x^{(N_j^p)}) & \ldots & H_{[1]}^{(N_j^p)}(x^{(N_j^p)}) & 1 & 0
\end{bmatrix}
\]

(2.38)

The conversion system can be written as

\[
\begin{pmatrix} \hat{u} \\ \hat{f} \end{pmatrix} = \begin{bmatrix} \hat{H} \\ \hat{K} \end{bmatrix} \begin{pmatrix} \hat{w} \\ \hat{c} \end{pmatrix} = \mathbf{C}^{-1} \begin{pmatrix} \hat{u} \\ \hat{f} \end{pmatrix},
\]

(2.39)

or

\[
\begin{pmatrix} \hat{w} \\ \hat{c} \end{pmatrix} = \mathbf{C}^{-1} \begin{pmatrix} \hat{u} \\ \hat{f} \end{pmatrix}.
\]

(2.40)

It can be seen that (2.35) is a special case of (2.40), where \(\hat{f} \) is simply set to null.

By substituting Equation (2.40) into Equations (2.30) and (2.31), the second- and first-order derivatives of the variable \(u \) are expressed in

\[
\frac{\partial^2 u(x)}{\partial x^2} = \left(H_{[2]}^{(1)}(x), H_{[2]}^{(2)}(x), \ldots, H_{[2]}^{(N_{j}^p)}(x), 0, 0 \right) \mathbf{C}^{-1} \begin{pmatrix} \hat{u} \\ \hat{f} \end{pmatrix},
\]

(2.41)

\[
\frac{\partial u(x)}{\partial x} = \left(H_{[1]}^{(1)}(x), H_{[1]}^{(2)}(x), \ldots, H_{[1]}^{(N_{j}^p)}(x), 1, 0 \right) \mathbf{C}^{-1} \begin{pmatrix} \hat{u} \\ \hat{f} \end{pmatrix},
\]

(2.42)
2.3 One-dimensional indirect/integrated radial basis function networks

or

\[
\frac{\partial^2 u(x)}{\partial x^2} = \bar{D}_{2x} \hat{u} + k_{2x}(x), \tag{2.43}
\]
\[
\frac{\partial u(x)}{\partial x} = \bar{D}_{1x} \hat{u} + k_{1x}(x), \tag{2.44}
\]

where \(k_{1x}\) and \(k_{2x}\) are scalars whose values depend on \(x, f_1\) and \(f_2\); and \(\bar{D}_{1x}\) and \(\bar{D}_{2x}\) known vectors of length \(N_x^{[j]}\).

Application of Equations (2.43) and (2.44) to boundary and interior points on the grid line \([j]\) yields

\[
\hat{\frac{\partial^2 u[j]}{\partial x^2}} = \hat{\bar{D}}_{2x}^{[j]} \hat{\hat{u}} + \hat{k}_{2x}^{[j]}, \tag{2.45}
\]
\[
\hat{\frac{\partial u[j]}{\partial x}} = \hat{\bar{D}}_{1x}^{[j]} \hat{\hat{u}} + \hat{k}_{1x}^{[j]}, \tag{2.46}
\]

where \(\hat{\bar{D}}_{1x}^{[j]}\) and \(\hat{\bar{D}}_{2x}^{[j]}\) are known matrices of dimension \(N_x^{[j]} \times N_x^{[j]}\); and \(\hat{k}_{1x}^{[j]}\) and \(\hat{k}_{2x}^{[j]}\) known vectors of length \(N_x^{[j]}\).

Similarly, along a vertical line \([j]\) parallel to the \(y\)-axis, the values of the second- and first-order derivatives of \(u\) with respect to \(y\) at the nodal points can be given by

\[
\hat{\frac{\partial^2 u[j]}{\partial y^2}} = \hat{\bar{D}}_{2y}^{[j]} \hat{\hat{u}} + \hat{k}_{2y}^{[j]}, \tag{2.47}
\]
\[
\hat{\frac{\partial u[j]}{\partial y}} = \hat{\bar{D}}_{1y}^{[j]} \hat{\hat{u}} + \hat{k}_{1y}^{[j]}. \tag{2.48}
\]
2.3 One-dimensional indirect/integrated radial basis function networks

2.3.2 1D-IRBFN expressions over the whole computational domain

The values of the second- and first-order derivatives of \(u \) with respect to \(x \) at the nodal points over the problem domain can be given by

\[
\frac{\partial^2 u}{\partial x^2} = \tilde{D}_{2x} \tilde{u} + \tilde{k}_{2x}, \tag{2.49}
\]

\[
\frac{\partial u}{\partial x} = \tilde{D}_{1x} \tilde{u} + \tilde{k}_{1x}, \tag{2.50}
\]

where

\[
\tilde{u} = (u^{(1)}, u^{(2)}, ..., u^{(N)})^T; \tag{2.51}
\]

\[
\frac{\partial^2 u}{\partial x^2} = \left(\frac{\partial^2 u^{(1)}}{\partial x^2}, \frac{\partial^2 u^{(2)}}{\partial x^2}, ..., \frac{\partial^2 u^{(N)}}{\partial x^2} \right)^T; \tag{2.52}
\]

\[
\frac{\partial u}{\partial x} = \left(\frac{\partial u^{(1)}}{\partial x}, \frac{\partial u^{(2)}}{\partial x}, ..., \frac{\partial u^{(N)}}{\partial x} \right)^T; \tag{2.53}
\]

and \(\tilde{D}_{1x} \) and \(\tilde{D}_{2x} \) are known matrices of dimension \(N \times N \); \(\tilde{k}_{1x} \) and \(\tilde{k}_{2x} \) known vectors of length \(N \); and \(N \) the total number of nodal points. The matrices \(\tilde{D}_{1x} \) and \(\tilde{D}_{2x} \) and the vectors \(\tilde{k}_{1x} \) and \(\tilde{k}_{2x} \) are formed as follows.

\[
\tilde{D}_{2x(idj, idj)} = \tilde{D}_{2x}^{[j]}, \tag{2.54}
\]

\[
\tilde{D}_{1x(idj, idj)} = \tilde{D}_{1x}^{[j]}, \tag{2.55}
\]

\[
\tilde{k}_{2x(idj)} = \tilde{k}_{2x}^{[j]}, \tag{2.56}
\]

\[
\tilde{k}_{1x(idj)} = \tilde{k}_{1x}^{[j]}, \tag{2.57}
\]

where \(idj \) is the index vector indicating the location of nodes on the \([j] \) grid line over the whole grid.

Similarly, the values of the second- and first-order derivatives of \(u \) with respect
2.3 One-dimensional indirect/integrated radial basis function networks

to y at the nodal points over the problem domain can be given by

$$
\frac{\partial^2 \tilde{u}}{\partial y^2} = \tilde{D}_{2y} \tilde{u} + \tilde{k}_{2y},
$$

(2.58)

$$
\frac{\partial \tilde{u}}{\partial y} = \tilde{D}_{1y} \tilde{u} + \tilde{k}_{1y}.
$$

(2.59)

The mixed partial derivative of \tilde{u} can be given by

$$
\frac{\partial^2 \tilde{u}}{\partial x \partial y} = \frac{1}{2} \left(\tilde{D}_{1x} \tilde{D}_{1y} + \tilde{D}_{1y} \tilde{D}_{1x} \right) \tilde{u} + \tilde{k}_{2xy} = \tilde{D}_{2xy} \tilde{u} + \tilde{k}_{2xy},
$$

(2.60)

where \tilde{k}_{2xy} is a known vector of length N.

In the special case of a rectangular domain and NSCM, the nodal values of the derivatives of u over the whole domain can be simply computed by means of Kronecker tensor products as follows.

$$
\frac{\partial^2 \tilde{u}}{\partial x^2} = \left(\hat{D}_{2x} \otimes I_y \right) \tilde{u} = \hat{D}_{2x} \tilde{u},
$$

(2.61)

$$
\frac{\partial \tilde{u}}{\partial x} = \left(\hat{D}_{1x} \otimes I_y \right) \tilde{u} = \hat{D}_{1x} \tilde{u},
$$

(2.62)

$$
\frac{\partial^2 \tilde{u}}{\partial y^2} = \left(\hat{D}_{2y} \otimes I_x \right) \tilde{u} = \hat{D}_{2y} \tilde{u},
$$

(2.63)

$$
\frac{\partial \tilde{u}}{\partial y} = \left(\hat{D}_{1y} \otimes I_x \right) \tilde{u} = \hat{D}_{1y} \tilde{u},
$$

(2.64)

where I_x and I_y are the identity matrices of dimension $N_x \times N_x$ and $N_y \times N_y$, respectively; \hat{D}_{1x} and \hat{D}_{2x} known matrices of dimension $N_x \times N_x$; \hat{D}_{1y} and \hat{D}_{2y} known matrices of dimension $N_y \times N_y$; \hat{D}_{1x}, \hat{D}_{1y}, \hat{D}_{2x} and \hat{D}_{2y} known matrices of dimension $N_x \times N_x$; \hat{D}_{1x}, \hat{D}_{1y} known matrices of dimension $N_x \times N_y$, $N_y \times N_x$; $\tilde{u} = (u^{(1)}, u^{(2)}, \ldots, u^{(N_xN_y)})^T$; and N_x and N_y the number of nodes in the x- and y-axes, respectively.
2.4 One-dimensional IRBFN discretisation of laminated composite plates

Let the subscripts \(bp \) and \(ip \) represent the location indices of boundary and interior points, \(N_{bp} \) the number of boundary points and \(N_{ip} \) the number of interior points.

Making use of (2.49), (2.50), (2.58), (2.59) and (2.60) and collocating the governing equations (2.17), (2.18) and (2.19) at the interior points result in

\[
\begin{bmatrix}
\tilde{R} - \lambda \tilde{S}
\end{bmatrix}
\tilde{\phi} = 0,
\]

where

\[
\lambda = \omega^2;
\]

\[
\tilde{R} = \begin{bmatrix}
k_{A55}\tilde{D}_{2x(ip,)}^{\psi_x} & k_{A55}\tilde{D}_{1x(ip,)}^{\psi_x} & k_{A44}\tilde{D}_{1y(ip,)}^{\psi_y} \\
-k_{A55}\tilde{D}_{1x(ip,)}^{\psi_x} & D_{11}\tilde{D}_{2x(ip,)}^{\psi_x} + D_{66}\tilde{D}_{2y(ip,)}^{\psi_y} - k_{A55}I & (D_{12} + D_{66})\tilde{D}_{2xy(ip,)}^{\psi_y} \\
k_{A44}\tilde{D}_{1y(ip,)}^{\psi_y} & D_{66}\tilde{D}_{2xy(ip,)}^{\psi_y} + D_{12}\tilde{D}_{2xy(ip,)}^{\psi_y} & (D_{66} + D_{22})\tilde{D}_{2xy(ip,)}^{\psi_y} - k_{A44}I
\end{bmatrix};
\]

\[
\tilde{S} = \begin{bmatrix}
I_0 I & 0 & 0 \\
0 & I_2 I & 0 \\
0 & 0 & I_2 I
\end{bmatrix};
\]

\[
\tilde{\phi} = \begin{bmatrix}
\tilde{W} \\
\tilde{\psi}_x \\
\tilde{\psi}_y
\end{bmatrix};
\]

and \(I \) and \(0 \) are identity and zero matrices of dimensions \(N_{ip} \times N \), respectively.

The system (2.65) can be expressed as

\[
\tilde{L}_{G}\tilde{\phi} = \lambda \tilde{\phi},
\]
where

\[\tilde{L}_G = \tilde{S}^{-1}\tilde{R}. \quad (2.71) \]

Making use of (2.50) and (2.59) and collocating the expressions (2.22), (2.23) and (2.25) at the boundary points on \(\Gamma \) yield

\[\tilde{L}_B \tilde{\phi} = 0, \quad (2.72) \]

where

\[
\tilde{L}_B = \begin{bmatrix}
1 & 0 & 0 \\
0 & -n_y I & n_z I \\
0 & \left(n_x^2 D_{11} + n_y^2 D_{12} \right) \tilde{D}_{1x(ip,:)} & \left(n_x^2 D_{12} + n_y^2 D_{22} \right) \tilde{D}_{1y(ip,:)} \\
 & +2n_x n_y D_{66} \tilde{D}_{1y(ip,:)} & +2n_x n_y D_{66} \tilde{D}_{1x(ip,:)}
\end{bmatrix}
\quad (2.73)
\]

By combining (2.70) and (2.72), one is able to obtain the discrete form of 1D-IRBFN for laminated composite plates

\[\tilde{L}_G \tilde{\phi} = \lambda \tilde{\phi}, \quad (2.74) \]
\[\tilde{L}_B \tilde{\phi} = 0, \quad (2.75) \]

or

\[
\begin{bmatrix} \tilde{L}_{G(ip,:)} & \tilde{L}_{G(bp,:)} \end{bmatrix} \begin{bmatrix} \tilde{\phi}(ip) \\ \tilde{\phi}(bp) \end{bmatrix} = \lambda \tilde{\phi}(ip), \quad (2.76)
\]
\[
\begin{bmatrix} \tilde{L}_{B(ip,:)} & \tilde{L}_{B(bp,:)} \end{bmatrix} \begin{bmatrix} \tilde{\phi}(ip) \\ \tilde{\phi}(bp) \end{bmatrix} = 0. \quad (2.77)
\]
Solving (2.77) gives

\[\tilde{\Phi}(bp) = -\tilde{L}_{B(\cdot, bp)}^{-1} \tilde{L}_{B(\cdot, ip)} \tilde{\Phi}(ip). \]

(2.78)

Substitution of (2.78) into (2.76) leads to the following system

\[\tilde{L} \tilde{\Phi}(ip) = \lambda \tilde{\Phi}(ip), \]

(2.79)

where \(\tilde{L} \) is a matrix of dimensions \(N_{ip} \times N_{ip} \), defined as

\[\tilde{L} = \tilde{L}_{G(\cdot, ip)} - \tilde{L}_{G(\cdot, bp)} \tilde{L}_{B(\cdot, bp)}^{-1} \tilde{L}_{B(\cdot, ip)}, \]

(2.80)

from which the natural frequencies and mode shapes of laminated composite plates can be obtained.

2.5 Numerical results and discussion

Three examples are considered here to study the performance of the present method. Unless otherwise stated, all layers of the laminate are assumed to be of the same thickness, density and made of the same linearly elastic composite material. The material parameters of a layer used here are: \(E_1/E_2 = 40; \ G_{12} = G_{13} = 0.6E_2; \ G_{23} = 0.5E_2; \ \nu_{12} = 0.25 \), where the subscripts 1 and 2 denote the directions parallel and perpendicular to the fibre direction in a layer. The ply angle of each layer measured from the global \(x \)-axis to the fibre direction is positive if measured clockwise, and negative if measured anti-clockwise. The eigenproblem (2.79) is solved using MATLAB to obtain the natural frequencies and mode shapes of laminated composite plates. In order to compare with the published results of Ferreira and Fasshauer (2007), Liew (1996), Liew et al. (2003) and Nguyen-Van et al. (2008), the same shear correction factors and nondimensionalised natural frequencies are also employed here:
2.5 Numerical results and discussion

- Case 1: Shear correction factor $K_s = \pi^2/12$.
 Nondimensionalised natural frequency: $\bar{\omega} = \omega \left(\frac{b^2}{\pi^2}\right) \sqrt{\rho h/D_0}$ with $D_0 = E_2 h^3/12(1 - \nu_{12}\nu_{21})$.

- Case 2: Shear correction factor $K_s = 5/6$.
 Nondimensionalised natural frequency: $\bar{\omega} = \left(\frac{\omega b^2}{h}\right) \sqrt{\rho/E_2}$,

where b is the length of the vertical edges of square/rectangular plates or the diameter of circular plates.

Boundary conditions can be imposed in the following ways:

- Approach 1: through the conversion process (2.39).
- Approach 2: by the algorithm (2.72) - (2.80).

2.5.1 Example 1: Rectangular laminated plates

This example investigates the characteristics of free vibration of rectangular cross-ply laminated plates with various thickness-to-length ratios, boundary conditions, lay-up stacking sequences and material properties. Both Approach 1 and Approach 2 are applied here to implement the boundary conditions.

Convergence study

Table 2.1 shows the convergence study of nondimensionalised natural frequencies. It can be seen that results by Approach 1 are slightly more accurate than those of Approach 2. The condition numbers in Approach 1 are smaller than those in Approach 2.

Table 2.2 presents the convergence study of nondimensionalised natural frequencies for simply supported three-ply $[0^\circ/90^\circ/0^\circ]$ rectangular laminated plates for
two cases of thickness to span ratios \(t/b = 0.001 \) and 0.2 by using Approach 1, while the corresponding convergence study for clamped laminated plates is presented in Table 2.3. Table 2.2 shows that faster convergence can be obtained for higher \(t/b \) ratios irrespective of \(a/b \) ratios. It can be seen that accuracy of the current results is generally higher than that of Ferreira and Fasshauer (2007) who used RBF-pseudospectral method (RBF-PS) and nearly equal to that of Liew (1996) in the case of \(t/b = 0.2 \). For the thin plate case \(t/b = 0.001 \), the p-Ritz method results are more accurate than RBF-PS ones and the IRBF ones in comparison with the exact solution. Specifically, the IRBF results of nondimensionalised fundamental natural frequency deviate by 0.32\% from the exact solution for the simply supported plate, and by 0.05\% from the p-Ritz method results for the clamped plate in the cases of \(t/b = 0.001 \) and \(a/b = 1 \).

Table 2.1: Simply supported three-ply \([0^\circ/90^\circ/0^\circ]\) square laminated plate: convergence study of nondimensionalised natural frequencies \(\bar{\omega} = \omega (b^2/\pi^2) \sqrt{\rho h/D_0} \) by two approaches, \(t/b = 0.2 \). Here \(\text{cond} \) denotes the condition number.

<table>
<thead>
<tr>
<th>Grid</th>
<th>Mode sequence number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\text{cond}</th>
</tr>
</thead>
<tbody>
<tr>
<td>App. 1</td>
<td>11 \times 11</td>
<td>3.5939</td>
<td>5.7708</td>
<td>7.3982</td>
<td>8.6896</td>
<td>9.1665</td>
<td>11.2222</td>
<td>11.2406</td>
<td>12.1306</td>
<td>1.36E+05</td>
</tr>
<tr>
<td></td>
<td>13 \times 13</td>
<td>3.5939</td>
<td>5.7696</td>
<td>7.3974</td>
<td>8.6881</td>
<td>9.1520</td>
<td>11.2125</td>
<td>11.2283</td>
<td>12.1209</td>
<td>2.43E+05</td>
</tr>
<tr>
<td></td>
<td>15 \times 15</td>
<td>3.5939</td>
<td>5.7693</td>
<td>7.3972</td>
<td>8.6878</td>
<td>9.1478</td>
<td>11.2097</td>
<td>11.2248</td>
<td>12.1192</td>
<td>2.95E+05</td>
</tr>
<tr>
<td></td>
<td>17 \times 17</td>
<td>3.5939</td>
<td>5.7692</td>
<td>7.3971</td>
<td>8.6876</td>
<td>9.1463</td>
<td>11.2087</td>
<td>11.2235</td>
<td>12.1173</td>
<td>2.65E+05</td>
</tr>
<tr>
<td>App. 2</td>
<td>11 \times 11</td>
<td>3.5932</td>
<td>5.7649</td>
<td>7.3968</td>
<td>8.6854</td>
<td>9.1209</td>
<td>11.2111</td>
<td>11.2184</td>
<td>12.1252</td>
<td>2.60E+05</td>
</tr>
<tr>
<td></td>
<td>15 \times 15</td>
<td>3.5937</td>
<td>5.7676</td>
<td>7.3968</td>
<td>8.6865</td>
<td>9.1402</td>
<td>11.2088</td>
<td>11.2186</td>
<td>12.1169</td>
<td>2.45E+06</td>
</tr>
<tr>
<td></td>
<td>17 \times 17</td>
<td>3.5937</td>
<td>5.7681</td>
<td>7.3969</td>
<td>8.6868</td>
<td>9.1418</td>
<td>11.2082</td>
<td>11.2109</td>
<td>12.1165</td>
<td>5.12E+06</td>
</tr>
</tbody>
</table>

* (Reddy, 2004)
2.5 Numerical results and discussion

Table 2.2: Simply supported three-ply \([0^\circ/90^\circ/0^\circ]\) rectangular laminated plate: convergence study of non-dimensionalised natural frequencies \(\bar{\omega} = \omega (b^2/\pi^2) \sqrt{\rho h/D_0}\) using Approach 1. Note that Ferreira and Fasshauer (2007) used 19x19 grid.

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>(t/b)</th>
<th>Grid 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>11 x 11</td>
<td>6.6542</td>
<td>9.4811</td>
<td>15.9414</td>
<td>24.983</td>
<td>26.3057</td>
<td>26.3794</td>
<td>30.0499</td>
</tr>
</tbody>
</table>

Table 2.3: Clamped three-ply \([0^\circ/90^\circ/0^\circ]\) rectangular laminated plate: convergence study of non-dimensionalised natural frequencies \(\bar{\omega} = \omega (b^2/\pi^2) \sqrt{\rho h/D_0}\) using Approach 1. Note that Ferreira and Fasshauer (2007) used 19x19 grid.

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>(t/b)</th>
<th>Grid 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>11 x 11</td>
<td>14.6844</td>
<td>17.6511</td>
<td>24.1628</td>
<td>33.6225</td>
<td>39.0914</td>
<td>40.7855</td>
<td>44.6870</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14.6791</td>
<td>17.6539</td>
<td>24.3897</td>
<td>34.7431</td>
<td>39.1978</td>
<td>40.8591</td>
<td>44.8533</td>
<td>47.8648</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>14.6774</td>
<td>17.6470</td>
<td>24.4898</td>
<td>35.2604</td>
<td>39.2082</td>
<td>40.8519</td>
<td>44.8829</td>
<td>48.804</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>14.6722</td>
<td>17.6383</td>
<td>24.5238</td>
<td>35.4771</td>
<td>39.2005</td>
<td>40.8349</td>
<td>44.8746</td>
<td>49.5902</td>
</tr>
<tr>
<td>RBF-PS</td>
<td>1.15</td>
<td>14.8138</td>
<td>17.6138</td>
<td>24.5114</td>
<td>35.5318</td>
<td>39.1572</td>
<td>40.7685</td>
<td>44.7865</td>
<td>50.3226</td>
</tr>
<tr>
<td>p-Ritz</td>
<td>1.15</td>
<td>14.6655</td>
<td>17.6138</td>
<td>24.5114</td>
<td>35.5318</td>
<td>39.1572</td>
<td>40.7685</td>
<td>44.7865</td>
<td>50.3226</td>
</tr>
<tr>
<td>Exact</td>
<td>1.15</td>
<td>14.6655</td>
<td>17.6138</td>
<td>24.5114</td>
<td>35.5318</td>
<td>39.1572</td>
<td>40.7685</td>
<td>44.7865</td>
<td>50.3226</td>
</tr>
</tbody>
</table>

\(^a\) (Ferreira and Fasshauer, 2007)
\(^b\) (Liew, 1996)
\(^c\) (Reddy, 2004)
2.5 Numerical results and discussion

Thickness-to-length ratios

Table 2.4 shows the effect of thickness-to-length ratio \(t/b \) on nondimensionalised fundamental frequency of the simply supported four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) square laminated plate in comparison with other published results. It can be seen that the fundamental frequency decreases with increasing \(t/b \) ratios. The numerical results obtained are in good agreement with the published results of Liew (1996) and Ferreira and Fasshauer (2007) and the exact solution derived from the FSDT plate model (Reddy, 2004). Figure 2.2 describes errors of nondimensionalised fundamental frequency \(\varepsilon = (\bar{\omega} - \bar{\omega}_E)/\bar{\omega}_E \) (\(\bar{\omega}_E \): nondimensionalised value of the exact fundamental frequency) with respect to thickness-to-span ratios \(t/b \) for the simply supported four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) square laminated plate in comparison with available published results. This figure shows that the accuracy of the present method is higher than that of the others for \(t/b \) ratios larger than 0.04. The errors reduce with increasing \(t/b \) ratios for IRBFN and RBF-PS methods, indicating that these methods are more accurate for thick plates than for thin plates. When the \(t/b \) ratio is smaller than 0.04, the accuracy of p-Ritz method is higher than that of IRBF and RBF-PS methods.

Table 2.4: Simply supported four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) square laminated plate: effect of thickness-to-length ratio on the nondimensionalised fundamental frequency \(\bar{\omega} = \omega \left(b^2/\pi^2 \right) \sqrt{\rho h/D_0} \) in comparison with other published results, using Approach 1 and a grid of 13 × 13.

<table>
<thead>
<tr>
<th>(t/b)</th>
<th>0.01</th>
<th>0.02</th>
<th>0.04</th>
<th>0.05</th>
<th>0.08</th>
<th>0.1</th>
<th>0.2</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Ritz(^b)</td>
<td>6.6060</td>
<td>6.5490</td>
<td>6.3380</td>
<td>6.1930</td>
<td>5.6770</td>
<td>5.3110</td>
<td>3.8070</td>
<td>3.2950</td>
</tr>
<tr>
<td>Exact(^c)</td>
<td>6.6059</td>
<td>6.5483</td>
<td>6.3342</td>
<td>6.1885</td>
<td>5.6675</td>
<td>5.2991</td>
<td>3.7918</td>
<td>3.2806</td>
</tr>
</tbody>
</table>

\(^a\) (Ferreira and Fasshauer, 2007)

\(^b\) (Liew, 1996)

\(^c\) (Reddy, 2004)
2.5 Numerical results and discussion

Figure 2.2: Simply supported four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) square laminated plate: errors of nondimensionalised fundamental frequency \((\epsilon = (\bar{\omega} - \bar{\omega}_E)/\bar{\omega}_E)\) with respect to thickness-to-length ratios \(t/b\).

Boundary conditions

Tables 2.5 and 2.6 show the effect of \(t/b\) ratio on nondimensionalised natural frequencies of three-ply \([0^\circ/90^\circ/0^\circ]\) and four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) rectangular laminated plates with boundary conditions SSSS, CCCC and SCSC. The first eight nondimensionalised natural frequencies are reported in these tables. It can be seen that the nondimensionalised natural frequencies reduce with increasing \(t/b\) ratios due to the effects of shear deformation and rotary inertia. These effects are more pronounced in higher modes. The effect of boundary conditions on the natural frequencies can also be seen in these tables. The higher constraints at the edges result in higher natural frequencies for the laminated plates as shown in Tables 2.5 and 2.6, i.e., the nondimensionalised natural frequency of SCSC plates is higher than that of SSSS plates, but lower than that of CCCC plates. Figures 2.3-2.5 show mode shapes of a simply supported three-ply \([0^\circ/90^\circ/0^\circ]\) square laminated plate, a simply supported three-ply \([0^\circ/90^\circ/0^\circ]\)
rectangular with \(a/b = 2\) laminated plate, and a clamped three-ply \([0^\circ/90^\circ/0^\circ]\) square laminated plate, respectively, in the case of \(t/b = 0.2\) and using a grid of \(15 \times 15\). The current results are fairly reasonable in comparison with available published results (Ferreira and Fasshauer, 2007).

Table 2.5: Three-ply \([0^\circ/90^\circ/0^\circ]\) rectangular laminated plates with various boundary conditions: effect of thickness-to-length ratio on nondimensionalised natural frequencies \(\bar{\omega} = \omega \left(b^2/\pi^2\right) \sqrt{\rho h/D_0}\), using Approach 1 and a grid of \(13 \times 13\).
2.5 Numerical results and discussion

Table 2.6: Four-ply \([0^\circ/90^\circ/90^\circ/0^\circ]\) rectangular laminated plates with various boundary conditions: effect of thickness-to-length ratio on nondimensionalised natural frequency \(\bar{\omega} = \omega \left(\frac{b^2}{\pi^2}\right) \sqrt{\rho h/D_0}\), using Approach 1 and a grid of 13 \(\times\) 13.

<table>
<thead>
<tr>
<th>B.C.</th>
<th>(\alpha/b)</th>
<th>(\beta/b)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSSS</td>
<td>0.001</td>
<td>6.7059</td>
<td>12.0397</td>
<td>18.5141</td>
<td>22.0534</td>
<td>23.3726</td>
<td>30.9024</td>
<td>40.5234</td>
<td>46.2463</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>6.1882</td>
<td>11.1007</td>
<td>18.8131</td>
<td>20.7977</td>
<td>21.2014</td>
<td>27.9396</td>
<td>33.4569</td>
<td>34.5564</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>5.2991</td>
<td>9.5066</td>
<td>12.8655</td>
<td>15.1686</td>
<td>16.3195</td>
<td>20.1927</td>
<td>20.7286</td>
<td>22.2630</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.001</td>
<td>2.9712</td>
<td>6.6541</td>
<td>9.9919</td>
<td>11.9088</td>
<td>13.6687</td>
<td>17.1813</td>
<td>21.8132</td>
<td>22.9920</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>2.9126</td>
<td>6.1904</td>
<td>9.4342</td>
<td>11.1019</td>
<td>11.8981</td>
<td>15.2281</td>
<td>18.9543</td>
<td>19.8146</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>2.7737</td>
<td>5.2996</td>
<td>8.2610</td>
<td>9.5688</td>
<td>9.5069</td>
<td>11.9952</td>
<td>12.9014</td>
<td>15.1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.150</td>
<td>2.5834</td>
<td>4.4575</td>
<td>6.9071</td>
<td>7.8395</td>
<td>9.2477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCCC</td>
<td>0.001</td>
<td>14.6792</td>
<td>20.6910</td>
<td>32.9201</td>
<td>37.6858</td>
<td>40.8607</td>
<td>48.8204</td>
<td>50.1301</td>
<td>62.4002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>11.3126</td>
<td>16.7726</td>
<td>22.9297</td>
<td>26.2097</td>
<td>26.2969</td>
<td>32.2400</td>
<td>37.0230</td>
<td>38.2915</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.001</td>
<td>6.5340</td>
<td>10.9786</td>
<td>15.6695</td>
<td>18.2986</td>
<td>19.0696</td>
<td>24.2980</td>
<td>29.7601</td>
<td>29.9145</td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>5.1020</td>
<td>7.1586</td>
<td>10.2158</td>
<td>10.5241</td>
<td>11.7065</td>
<td>13.7411</td>
<td>13.8243</td>
<td>16.6254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.150</td>
<td>4.1965</td>
<td>5.5887</td>
<td>7.6416</td>
<td>8.1429</td>
<td>8.9674</td>
<td>9.9667</td>
<td>10.3876</td>
<td>12.2071</td>
<td></td>
</tr>
<tr>
<td>SCSC</td>
<td>0.001</td>
<td>8.3209</td>
<td>16.7088</td>
<td>24.5146</td>
<td>29.0185</td>
<td>30.5659</td>
<td>39.2791</td>
<td>48.5199</td>
<td>53.3015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>7.7027</td>
<td>14.6439</td>
<td>19.3708</td>
<td>23.2436</td>
<td>25.0077</td>
<td>31.6304</td>
<td>34.6669</td>
<td>37.0746</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>8.2781</td>
<td>16.5860</td>
<td>24.2823</td>
<td>28.7169</td>
<td>30.3815</td>
<td>38.9510</td>
<td>48.8953</td>
<td>52.1464</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.150</td>
<td>8.2468</td>
<td>16.4639</td>
<td>24.0415</td>
<td>28.4167</td>
<td>30.0368</td>
<td>38.4583</td>
<td>48.1057</td>
<td>49.8091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.001</td>
<td>5.7766</td>
<td>8.3309</td>
<td>14.5915</td>
<td>15.3473</td>
<td>16.7142</td>
<td>20.8753</td>
<td>24.1291</td>
<td>28.6815</td>
</tr>
<tr>
<td></td>
<td>0.150</td>
<td>3.9187</td>
<td>5.3244</td>
<td>7.4861</td>
<td>8.0180</td>
<td>8.8189</td>
<td>9.8824</td>
<td>10.2831</td>
<td>12.1477</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.3: Mode shapes for simply supported three-ply $[0^\circ/90^\circ/0^\circ]$ square laminated plate with $t/b = 0.2$ and grid of 15×15.

Figure 2.4: Mode shapes for simply supported three-ply $[0^\circ/90^\circ/0^\circ]$ rectangular laminated plate with $a/b = 2$, $t/b = 0.2$ and grid of 15×15.
2.5 Numerical results and discussion

Figure 2.5: Mode shapes for clamped three-ply $[0^\circ/90^\circ/0^\circ]$ square laminated plate with $t/b = 0.2$ and grid of 15×15.

Material property

Table 2.7 presents the effect of modulus ratio E_1/E_2 on the nondimensionalised fundamental frequency of the simply supported four-ply $[0^\circ/90^\circ/90^\circ/0^\circ]$ square laminated plate. In order to compare with the available published results, the shear correction factor of 5/6 and thickness-to-length ratio of 0.2 are used in this example. It can be seen that the fundamental frequency increases with increasing modulus ratio. Figure 2.6 shows the errors of nondimensionalised fundamental frequency ($\varepsilon = (\bar{\omega} - \bar{\omega}_E)/\bar{\omega}_E$) with respect to modulus ratio E_1/E_2 for the simply supported four-ply laminated square plate $[0^\circ/90^\circ/90^\circ/0^\circ]$ in comparison with existing published results. The accuracy of current method is not only fairly high but also very stable in a wide range of E_1/E_2 ratios as shown in this figure.
Figure 2.6: Simply supported four-ply square laminated plate $[0^\circ/90^\circ/90^\circ/0^\circ]$: errors of nondimensionalised fundamental frequency ($\varepsilon = \frac{\bar{\omega} - \bar{\omega}_E}{\bar{\omega}_E}$) with respect to modulus ratio E_1/E_2, $t/b = 0.2$.

Table 2.7: Simply supported four-ply $[0^\circ/90^\circ/90^\circ/0^\circ]$ square laminated plate: effect of modulus ratio E_1/E_2 on the accuracy of nondimensionalised fundamental frequency $\bar{\omega} = \left(\omega b^2/h\right) \sqrt{\rho / E_2}$, $t/b = 0.2$, using Approach 1 and a grid of 13×13, $K_s = 5/6$.

<table>
<thead>
<tr>
<th>E_1/E_2</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRBFN</td>
<td>8.2982</td>
<td>9.5671</td>
<td>10.3258</td>
<td>10.8540</td>
</tr>
<tr>
<td>MISQ20 (Nguyen-Van et al., 2008)</td>
<td>8.3094</td>
<td>9.5698</td>
<td>10.3224</td>
<td>10.8471</td>
</tr>
<tr>
<td>MLSDQ (Liew et al., 2003)</td>
<td>8.2992</td>
<td>9.5680</td>
<td>10.3270</td>
<td>10.8550</td>
</tr>
</tbody>
</table>
2.5.2 Example 2: Circular laminated plates

Free vibration analysis for \([\beta^o/ - \beta^o/ - \beta^o/\beta^o]\) circular laminated plates with diameter \(b\) and thickness \(t\) shown in Figure 2.7 is studied in this section. Boundary conditions are imposed with Approach 2. The thickness-to-diameter ratio \(t/b\) of 0.1, various fibre orientation angles with \(\beta = 0^o\) and \(45^o\), and modulus ratio \((E_1/E_2)\) of 40 are considered. Table 2.8 presents the convergence study of nondimensionalised natural frequencies for various mode numbers for the simply supported four-ply \([\beta^o/ - \beta^o/ - \beta^o/\beta^o]\) circular laminated plate in comparison with other published results, while the corresponding convergence study for a clamped four-ply \([\beta^o/ - \beta^o/ - \beta^o/\beta^o]\) circular laminated plate is given in Table 2.9. It can be seen that the current results are in good agreement with those of Liew et al. (2003) who used a moving least squares differential quadrature method (MLSDQ). The numerical solution converges faster for the clamped circular plate than for the simply supported one. Table 2.10 shows the effect of thickness-to-diameter ratio on the nondimensionalised frequencies for various modes of the clamped four ply \([\beta^o/ - \beta^o/ - \beta^o/\beta^o]\) circular laminated plate. A grid is taken to be \(15 \times 15\) in this computation. Figure 2.8 presents the mode shapes of the simply supported four-ply \([45^o/ - 45^o/ - 45^o/45^o]\) circular laminated plate with \(t/b = 0.1\).

![Figure 2.7: Computational domain of four-ply \([\beta^o/ - \beta^o/ - \beta^o/\beta^o]\) circular laminated plate.](image)
2.5 Numerical results and discussion

Figure 2.8: Mode shapes for simply supported four-ply $[45^\circ/-45^\circ/-45^\circ/45^\circ]$ circular laminated plate, $t/b = 0.1$, grid of 19×19.

Table 2.8: Simply supported four-ply $[\beta^\circ/-\beta^\circ/-\beta^\circ/\beta^\circ]$ circular laminated plate: convergence study of nondimensionalised natural frequencies for various mode number $\bar{\omega} = (\omega b^2/h) \sqrt{\rho/E_2}$, $t/b = 0.1$, $E_1/E_2 = 40$.

<table>
<thead>
<tr>
<th>β</th>
<th>Grid</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>11×11</td>
<td>16.720</td>
<td>24.339</td>
<td>36.233</td>
<td>49.031</td>
<td>52.850</td>
<td>60.710</td>
<td>65.304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13×13</td>
<td>16.690</td>
<td>24.157</td>
<td>35.490</td>
<td>49.800</td>
<td>50.483</td>
<td>59.661</td>
<td>65.094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15×15</td>
<td>16.673</td>
<td>24.083</td>
<td>35.215</td>
<td>49.952</td>
<td>48.707</td>
<td>49.640</td>
<td>59.295</td>
<td>64.959</td>
</tr>
<tr>
<td></td>
<td>17×17</td>
<td>16.664</td>
<td>24.046</td>
<td>35.084</td>
<td>49.936</td>
<td>48.659</td>
<td>49.254</td>
<td>59.124</td>
<td>64.833</td>
</tr>
<tr>
<td></td>
<td>19×19</td>
<td>16.658</td>
<td>24.025</td>
<td>35.014</td>
<td>49.926</td>
<td>48.631</td>
<td>49.056</td>
<td>59.032</td>
<td>64.709</td>
</tr>
<tr>
<td></td>
<td>25×25</td>
<td>16.648</td>
<td>23.999</td>
<td>34.931</td>
<td>49.910</td>
<td>48.592</td>
<td>48.838</td>
<td>58.919</td>
<td>64.473</td>
</tr>
<tr>
<td></td>
<td>31×31</td>
<td>16.645</td>
<td>23.990</td>
<td>34.904</td>
<td>49.904</td>
<td>48.376</td>
<td>48.774</td>
<td>58.878</td>
<td>64.384</td>
</tr>
<tr>
<td></td>
<td>MISQ20a</td>
<td>16.168</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 3$)b</td>
<td>16.512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 4$)b</td>
<td>16.359</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 5$)b</td>
<td>16.278</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45°</td>
<td>11×11</td>
<td>17.653</td>
<td>32.175</td>
<td>40.886</td>
<td>52.412</td>
<td>53.679</td>
<td>64.551</td>
<td>71.124</td>
<td>72.677</td>
</tr>
<tr>
<td></td>
<td>13×13</td>
<td>17.643</td>
<td>32.128</td>
<td>40.861</td>
<td>52.116</td>
<td>53.683</td>
<td>64.376</td>
<td>70.979</td>
<td>72.288</td>
</tr>
<tr>
<td></td>
<td>15×15</td>
<td>17.637</td>
<td>32.111</td>
<td>40.847</td>
<td>51.997</td>
<td>53.682</td>
<td>64.304</td>
<td>70.898</td>
<td>72.055</td>
</tr>
<tr>
<td></td>
<td>17×17</td>
<td>17.634</td>
<td>32.103</td>
<td>40.839</td>
<td>51.939</td>
<td>53.679</td>
<td>64.267</td>
<td>70.852</td>
<td>71.926</td>
</tr>
<tr>
<td></td>
<td>19×19</td>
<td>17.631</td>
<td>32.098</td>
<td>40.833</td>
<td>51.907</td>
<td>53.677</td>
<td>64.246</td>
<td>70.824</td>
<td>71.853</td>
</tr>
<tr>
<td></td>
<td>25×25</td>
<td>17.627</td>
<td>32.090</td>
<td>40.824</td>
<td>51.866</td>
<td>53.670</td>
<td>64.218</td>
<td>70.784</td>
<td>71.762</td>
</tr>
<tr>
<td></td>
<td>31×31</td>
<td>17.625</td>
<td>32.087</td>
<td>40.819</td>
<td>51.850</td>
<td>53.665</td>
<td>64.208</td>
<td>70.767</td>
<td>71.732</td>
</tr>
<tr>
<td></td>
<td>MISQ20a</td>
<td>17.162</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 3$)b</td>
<td>17.147</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 4$)b</td>
<td>17.781</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 5$)b</td>
<td>17.141</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a (Nguyen-Van et al., 2008)
b (Liew et al., 2003)
Table 2.9: Clamped four-ply $[\beta^0 / -\beta^0 / -\beta^0 / \beta^0]$ circular laminated plate: convergence study of nondimensionalised natural frequencies for various mode numbers $(\bar{\omega} = (\omega^2 b^2/h) \sqrt{\rho/E_2}, t/b = 0.1, E_1/E_2 = 40)$.

<table>
<thead>
<tr>
<th>β</th>
<th>Grid</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>11×11</td>
<td>22.198</td>
<td>29.658</td>
<td>40.987</td>
<td>42.764</td>
<td>50.582</td>
<td>55.075</td>
<td>61.568</td>
<td>65.849</td>
</tr>
<tr>
<td></td>
<td>13×13</td>
<td>22.195</td>
<td>29.647</td>
<td>40.929</td>
<td>42.754</td>
<td>50.521</td>
<td>54.906</td>
<td>61.299</td>
<td>65.793</td>
</tr>
<tr>
<td></td>
<td>15×15</td>
<td>22.198</td>
<td>29.646</td>
<td>40.921</td>
<td>42.759</td>
<td>50.526</td>
<td>54.876</td>
<td>61.312</td>
<td>65.787</td>
</tr>
<tr>
<td></td>
<td>17×17</td>
<td>22.198</td>
<td>29.644</td>
<td>40.918</td>
<td>42.761</td>
<td>50.523</td>
<td>54.865</td>
<td>61.304</td>
<td>65.786</td>
</tr>
<tr>
<td></td>
<td>MISQ20a</td>
<td>22.123</td>
<td>29.768</td>
<td>41.726</td>
<td>42.805</td>
<td>50.756</td>
<td>56.950</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 3$)b</td>
<td>22.211</td>
<td>29.651</td>
<td>41.101</td>
<td>42.635</td>
<td>50.309</td>
<td>54.553</td>
<td>60.719</td>
<td>64.989</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 4$)b</td>
<td>22.219</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 5$)b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45°</td>
<td>11×11</td>
<td>24.737</td>
<td>39.112</td>
<td>43.630</td>
<td>57.130</td>
<td>57.190</td>
<td>57.254</td>
<td>65.693</td>
<td>74.254</td>
</tr>
<tr>
<td></td>
<td>13×13</td>
<td>24.737</td>
<td>39.101</td>
<td>43.630</td>
<td>57.135</td>
<td>57.194</td>
<td>57.640</td>
<td>74.029</td>
<td>74.854</td>
</tr>
<tr>
<td></td>
<td>15×15</td>
<td>24.737</td>
<td>39.099</td>
<td>43.630</td>
<td>57.138</td>
<td>57.185</td>
<td>57.630</td>
<td>74.035</td>
<td>74.823</td>
</tr>
<tr>
<td></td>
<td>17×17</td>
<td>24.737</td>
<td>39.099</td>
<td>43.630</td>
<td>57.136</td>
<td>57.181</td>
<td>57.627</td>
<td>74.029</td>
<td>74.810</td>
</tr>
<tr>
<td></td>
<td>MISQ20a</td>
<td>24.766</td>
<td>39.441</td>
<td>43.817</td>
<td>57.907</td>
<td>57.945</td>
<td>66.297</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 3$)b</td>
<td>24.752</td>
<td>39.181</td>
<td>43.607</td>
<td>56.759</td>
<td>56.967</td>
<td>65.571</td>
<td>73.525</td>
<td>74.208</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 4$)b</td>
<td>24.744</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(MLSDQ, $N_c = 5$)b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a (Nguyen-Van et al., 2008)

b (Liew et al., 2003)

Table 2.10: Clamped four-ply $[\beta^0 / -\beta^0 / -\beta^0 / \beta^0]$ circular laminated plate: effect of thickness-to-diameter ratio on nondimensionalised natural frequencies for various mode numbers, $\bar{\omega} = (\omega^2 b^2/h) \sqrt{\rho/E_2}, E_1/E_2 = 40$, using a grid of 15×15.

<table>
<thead>
<tr>
<th>β</th>
<th>t/b</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0.001</td>
<td>45.245</td>
<td>56.510</td>
<td>72.646</td>
<td>93.440</td>
<td>118.647</td>
<td>119.399</td>
<td>134.972</td>
<td>146.804</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>33.401</td>
<td>42.190</td>
<td>55.649</td>
<td>70.957</td>
<td>73.602</td>
<td>80.909</td>
<td>94.742</td>
<td>95.602</td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>22.198</td>
<td>29.646</td>
<td>40.921</td>
<td>42.759</td>
<td>50.526</td>
<td>54.876</td>
<td>61.312</td>
<td>65.787</td>
</tr>
<tr>
<td></td>
<td>0.150</td>
<td>16.424</td>
<td>23.040</td>
<td>30.528</td>
<td>32.359</td>
<td>37.045</td>
<td>43.081</td>
<td>45.728</td>
<td>45.907</td>
</tr>
<tr>
<td>45°</td>
<td>0.001</td>
<td>46.435</td>
<td>70.615</td>
<td>110.019</td>
<td>115.873</td>
<td>143.115</td>
<td>163.166</td>
<td>184.000</td>
<td>218.970</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>35.506</td>
<td>55.366</td>
<td>70.743</td>
<td>84.208</td>
<td>89.932</td>
<td>112.326</td>
<td>117.096</td>
<td>117.614</td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>24.737</td>
<td>39.099</td>
<td>43.630</td>
<td>57.138</td>
<td>57.185</td>
<td>65.630</td>
<td>74.035</td>
<td>74.823</td>
</tr>
<tr>
<td></td>
<td>0.150</td>
<td>18.580</td>
<td>29.222</td>
<td>31.328</td>
<td>41.286</td>
<td>41.855</td>
<td>46.084</td>
<td>53.062</td>
<td>53.211</td>
</tr>
<tr>
<td></td>
<td>0.200</td>
<td>14.754</td>
<td>23.093</td>
<td>24.359</td>
<td>32.151</td>
<td>32.686</td>
<td>35.454</td>
<td>41.023</td>
<td>41.079</td>
</tr>
</tbody>
</table>
2.5.3 Example 3: Square isotropic plate with a square hole

Before investigating the free vibration of a square isotropic plate with a square hole for which there is currently no exact solution, a simply supported square isotropic plate is considered to validate the results of both 1D-IRBF method and Strand7 (Finite element analysis system). The results by the 1D-IRBF for complete geometries can then be compared with those obtained by Strand7. Approach 1 is employed here to implement the boundary conditions. Table 2.11 presents the comparison of nondimensionalised natural frequencies between 1D-IRBF, Strand7 and exact results for the simply supported square isotropic plate with thickness to length ratio t/b of 0.1. Converged solutions are obtained on a grid of 15×15 for the IRBF method and of 21×21 for Strand7. This table shows that the IRBF result is more accurate than Strand7’s in comparison with the exact solution of Reddy (2004). Next, the methods are used to analyse the simply supported square isotropic plate with a square hole. All edges of the hole are also subjected to the simply supported boundary condition. Table 2.12 shows the nondimensionalised natural frequencies for various mode numbers of the simply supported square isotropic plate with a square hole. In this computation, the grid is taken to be 17×17 for the IRBF method and 41×41 for Strand7 to obtain the converged solutions. It can be seen that good agreement between the 1D-IRBF and Strand7 results is obtained for various mode numbers. Figure 2.9 shows the first four mode shapes of the simply supported square isotropic plate with a square hole.
2.5 Numerical results and discussion

Table 2.11: Simply supported square isotropic plate: Comparison of nondimensionalised natural frequencies among 1D-IRBF, Strand7 and exact results, \(\bar{\omega} = (\omega b^2/h) \sqrt{\rho/E_2} \), \(t/b = 0.1 \), \(K_s = 5/6 \).

<table>
<thead>
<tr>
<th>Mode</th>
<th>IRBF (15 × 15)</th>
<th>Strand7 (21 × 21)</th>
<th>Exact (Reddy, 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.769</td>
<td>5.809</td>
<td>5.769</td>
</tr>
<tr>
<td>2</td>
<td>13.765</td>
<td>13.970</td>
<td>13.764</td>
</tr>
<tr>
<td>3</td>
<td>21.122</td>
<td>21.569</td>
<td>21.121</td>
</tr>
<tr>
<td>4</td>
<td>25.780</td>
<td>26.278</td>
<td>25.734</td>
</tr>
<tr>
<td>5</td>
<td>32.319</td>
<td>33.129</td>
<td>32.284</td>
</tr>
</tbody>
</table>

Table 2.12: Simply supported square isotropic plate with a square hole: Comparison of nondimensionalised natural frequencies between 1D-IRBF and Strand7 results, \(\bar{\omega} = (\omega b^2/h) \sqrt{\rho/E_2} \), \(t/b = 0.1 \), \(K_s = 5/6 \).

<table>
<thead>
<tr>
<th>Mode</th>
<th>IRBF (17 × 17)</th>
<th>Strand7 (41 × 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.931</td>
<td>38.856</td>
</tr>
<tr>
<td>2</td>
<td>39.959</td>
<td>39.805</td>
</tr>
<tr>
<td>3</td>
<td>42.503</td>
<td>41.805</td>
</tr>
<tr>
<td>4</td>
<td>42.886</td>
<td>44.142</td>
</tr>
<tr>
<td>5</td>
<td>46.890</td>
<td>47.964</td>
</tr>
</tbody>
</table>

Figure 2.9: Mode shapes of simply supported square isotropic plate with a square hole, \(t/b = 0.1 \), using a grid of 17 × 17.
2.6 Concluding remarks

Free vibration analysis of laminated composite plates using FSDT and 1D-IRBFN method is presented. Unlike DRBFNs, IRBFNs are constructed through integration rather than differentiation, which helps to stabilise a numerical solution and provide an effective way to implement derivative boundary conditions. Cartesian grids are used to discretise both rectangular and non-rectangular plates. The laminated composite plates with various boundary conditions, length-to-width ratios a/b, thickness-to-length ratios t/b, and material properties are considered. The obtained numerical results are in good agreement with the available published results and exact solutions. Convergence study shows that faster rates are obtained for higher t/b ratios irrespective of a/b ratios of the rectangular plates. The effects of boundary conditions on the natural frequencies are also numerically investigated, which indicates that higher constraints at the edges yield higher natural frequencies. It is also found that the present method is not only highly accurate but also very stable for a wide range of modulus ratios.
Chapter 3

Local MLS-1D-IRBFN method for steady incompressible viscous flows

In the previous chapter, the 1D-IRBFN method has been successfully developed for free vibration analysis of laminated composite plates. In the present chapter, we propose a novel local moving least square - one-dimensional integrated radial basis function network (LMLS-1D-IRBFN) method for solving incompressible viscous flow problems using stream function-vorticity formulation. In this method, the partition of unity method is employed as a framework to incorporate the moving least square (MLS) and one-dimensional integrated radial basis function network (1D-IRBFN) techniques. The major advantages of the proposed method include: (i) a banded sparse system matrix which helps reduce the computational cost; (ii) the Kronecker-δ property of the constructed shape function which helps impose the essential boundary condition in an exact manner; and (iii) high accuracy and fast convergence rate owing to the use of integration instead of conventional differentiation to construct the local RBF approximations. Several examples including two-dimensional Poisson problems,
lid-driven cavity flow and flow past a circular cylinder are considered and the present results are compared with exact solutions and numerical results from other methods in the literature to demonstrate the attractiveness of the proposed method.

3.1 Introduction

Two-dimensional (2D) incompressible viscous flows governed by Navier-Stokes equations have been extensively studied to verify new numerical methods. The main issues for a successful numerical solver for this kind of problems are the proper treatments of the nonlinear convection term and incompressibility. For the first issue, the presence of the convection term causes serious numerical difficulties in the form of oscillatory solutions or numerical divergence when Reynolds (Re) number or Peclet (Pe) number is high. To deal with this, schemes related to upwinding have been developed to stabilize the FDM, FEM, and FVM (Ghia et al., 1982; Leonard, 1979; Brooks and Hughes, 1982). Brooks and Hughes (1982) developed a Streamline Upwind/Petrov-Galerkin (SUPG) method for convection-dominated flows, which has the robustness of an upwind method and the accuracy associated with the wiggle-free Galerkin solutions. In their method, an additional stability term was added in the upwind direction and several different treatments of incompressibility are incorporated into the formulation. The upwind concept is also needed in the meshfree methods in order to obtain a good accuracy for convection-dominated flows. Lin and Atluri (2000) proposed the meshless local Petrov-Galerkin (MLPG) method with two upwinding schemes for solving convection-diffusion problems. They skewed the weight function opposite to the streamline direction in the first scheme and shifted the local subdomain opposite to the streamline direction in the second scheme. Their numerical results indicated that the MLPG with the second scheme yielded better solutions than SUPG. This method was extended to solve the incompressible Navier-Stokes equations in (Lin and Atluri, 2001).
For the second issue, i.e. treatment for incompressibility, incompressible flows can be solved through the stream function and vorticity formulation. This approach can satisfy the incompressibility condition automatically, and the pressure term is eliminated. However, this formulation experiences other type of difficulty arising from the computation of the vorticity boundary condition on the wall, especially the curved ones. For three-dimensional problems, the incompressible Navier-Stokes equations are usually based on primitive variables (pressure and velocity) as the stream function and vorticity formulation are not applicable. In order to impose the incompressibility constraint, mixed formulations are considered by introducing another variable, the Lagrange multiplier. There are so-called inf-sup (or Ladyzenskaya-Babuška-Brezzi) stability conditions for this kind of formulations (Babuška, 1971). If these conditions are not satisfied, spurious pressure solutions may be obtained.

In 1990, Kansa proposed a collocation scheme based on multiquadric (MQ) radial basis functions for the numerical solution of partial differential equations (PDEs) (Kansa, 1990b). Their numerical results showed that MQ scheme yielded an excellent interpolation and partial derivative estimates for a variety of two-dimensional functions over both gridded and scattered data. Since this original work, a number of meshfree methods have been developed and used to solve fluid-flow problems. Park and Youn (2001) proposed the first-order least-squares method (LSMFM) to solve Laplace equations. Unlike the Galerkin method, the least-square formulation did not make use of the divergence theorem to convert the domain integral into a boundary integral. Therefore, the solution accuracy is less sensitive to the integration accuracy. However, the first-order least squares formulation requires more unknowns than the Galerkin formulation since the dual variables are employed as unknowns in addition to the primary variables, thereby increasing the computational cost. Zhang et al. (2005) employed the LSMFM based on the first-order velocity-pressure-vorticity formulation to investigate the 2D steady incompressible viscous flow problems. Their numerical results showed that the least-squares method based on the min-
3.1 Introduction

Imization of the squared residuals can reduce oscillations and instability of the solutions in comparison with the behaviour of methods based on Galerkin formulation. In their approach, the penalty method was used to enforce the essential boundary conditions. It is well-known that the larger the penalty parameter, the more accurate the numerical solution will be, but large penalty parameters can affect the conditioning of the system matrix adversely (Hetherington and Askes, 2009). Arzani and Afshar (2006) developed discrete least-squares meshless (DLSM) method for the solution of convection-dominated problems. A fractional step method in conjunction with DLSM method was proposed to solve the steady-state incompressible Navier-Stokes equations in primitive form using large time steps without having to satisfy the inf-sup condition (Firoozjaee and Afshar, 2011).

In contrast to the advantages of no mesh generation, most of the meshfree methods have difficulty in simulating large-scale problems, because they produce very dense system matrices. Lee et al. (2003) proposed the local multi-quadric (LMQ) and the local inverse multi-quadric (LIMQ) approximations for solving partial differential equations (PDEs). Their constructed shape functions strictly satisfied the Kronecker-δ condition which allows an imposition of the essential boundary condition in the same manner as in the standard FEM. Their numerical results showed that the LMQ and LIMQ often outperform their global counterparts, particularly with regard to viability and stability. Šarler and Vertnik (2006) presented an explicit local radial basis function (RBF) collocation method for diffusion problems. The method appeared efficient, because it does not require a solution of a large system of equations like the original RBF collocation method (Kansa, 1990b). Babuška and Melenk (1997) presented the partition of unity method (PUM) with attractive features. In the PUM, if analytic knowledge about the local behaviour of the problem solution is known, local approximation can be done with functions better suited than polynomials as in the classical FEM. The PU framework also provides a powerful approach to model mechanical problems with discontinuities and singularities. Krysl and
Belytschko (2000) proposed an approach to construct linear approximation basis functions for meshless method based on the concept of PU. In their work, the Shepard basis (Shepard, 1968) is used as a PU function. The PUM was also employed by Chen et al. (2008) to combine the reproducing kernel and RBF approximations in an approach that enjoys the exponential convergence of RBF and yields a banded and better-conditioned discrete system matrix. Le et al. (2010) proposed a locally supported moving IRBFN-based meshless method for solving various problems including heat transfer, elasticity of both compressible and incompressible materials, and linear static crack problems.

In the past, lid-driven cavity flow and flow past a circular cylinder have been studied as benchmark problems by many researchers to verify their new numerical methods. In the first problem, the presence of singularities at two of the corners of the cavity, where the velocity is discontinuous, makes it difficult to predict the numerical results accurately. Ghia et al. (1982) presented a FDM with a coupled strongly implicit multigrid method to obtain high-\(Re\) fine-mesh flow solutions. Botella and Peyret (1998) introduced a third-order time-accurate Chebyshev projection method with an analytical treatment of the singularities for the lid-driven cavity flow. Their numerical results are widely considered as benchmark solutions in the literature. In the second problem, it is well-known that the flow has a stable pattern with a fixed pair of symmetric vortices behind the cylinder at \(Re\) up to 40. Ding et al. (2004) presented a hybrid approach, which combines the conventional FDM and the meshfree least square-based finite difference (MLSFD) method for simulating the 2D steady and unsteady incompressible flows. In their works, the MLSFD method was adopted to deal with the spatial discretisation in the region with complex geometry and the conventional FDM was applied in the rest of the flow domain to take advantage of its high computational efficiency. Kim et al. (2007) developed a meshfree point collocation method for the stream function-vorticity formulation of 2D incompressible Navier-Stokes equations. The MLS approximation was employed to construct shape functions in conjunction with a point collocation technique.
A one-dimensional integrated radial basis function network (1D-IRBFN) collocation method for the solution of second- and fourth-order PDEs was presented by Mai-Duy and Tanner (2007). In this method, Cartesian grids were used to discretise both rectangular and non-rectangular problem domains. The computational cost associated with the Cartesian grid generation is negligible in comparison with that required for the body-fitted mesh. Along a grid line, IRBFNs are employed to represent the field variable and its relevant derivatives. Such networks are called 1D-IRBFNs. Through integration constants, one can impose derivative boundary conditions and the governing equations at the two end points of a grid line in an exact manner. The 1D-IRBFN method is much more efficient than the original IRBFN method reported in Mai-Duy and Tran-Cong (2001a). Ngo-Cong et al. (2011) extended this method to investigate free vibration of composite laminated plates based on first-order shear deformation theory (Chapter 2). The present work is concerned with the development of a new numerical method to handle 2D incompressible viscous flows at a high Re number and in large scale problems. The proposed method is based on the PU concept acting as a framework to incorporate MLS and 1D-IRBFN techniques, and from here on is named LMLS-1D-IRBFN, which is a local MLS-1D-IRBFN method. The approximation is locally supported, which leads to sparse system matrices and requires less computational effort than the case of using 1D-IRBFN method alone, while the order of accuracy remains high as in the case of 1D-IRBFN. Unlike conventional MLS-based methods, the LMLS-1D-IRBFN shape functions satisfy the Kronecker-δ property and thus the essential boundary conditions can be imposed in an exact manner.

The chapter is organised as follows. Section 3.2 describes the notations. Section 3.3 briefly reproduces the MLS approximation technique. The LMLS-1D-IRBFN method is presented in Section 3.4. The governing equations for incompressible viscous flows are given in Section 3.5. The LMLS-1D-IRBFN discretisation of the governing equations is described in Section 3.6. Several numerical examples are investigated using the proposed method in Section 3.7.
3.2 Notations

In the remainder of the chapter, we use

- the notation \(\overline{[\]} \) for a vector/matrix \([\]\) that is associated with a segment of a grid line;
- the notation \(\hat{[\]} \) for a vector/matrix \([\]\) that is associated with a grid line;
- the notation \(\tilde{[\]} \) for a vector/matrix \([\]\) that is associated with the whole set of grid lines;
- the notation \([\]\)\(_{\eta,\theta}\) to denote selected rows \(\eta\) and columns \(\theta\) of the matrix \([\];\)
- the notation \([\]\)\(_{\eta}\) to denote selected components \(\eta\) of the vector \([\];\)
- the notation \([\]\)\(_{\cdot,\theta}\) to denote all rows and selected columns \(\theta\) of the matrix \([\];\) and
- the notation \([\]\)\(_{\eta,\cdot}\) to denote all columns and selected rows \(\eta\) of the matrix \([\];\).

3.3 Moving least square approximation

The moving least square procedure (Liu, 2003) is briefly described in this section. The domain of interest is discretised using a Cartesian grid as shown in Figure 3.1. On an \(x\)-grid line, e.g. \([l]\), consider a nodal point \(x_i\) with its associated support domain, e.g. \([x_{i-1}, x_{i+1}]\) for the case of 3-node local support. Let
$u^h(x)$ be the approximation of the field variable u along this support domain and given by

$$u^h(x) = \sum_{j=0}^{m} p_j(x)a_j(x) = \bar{p}^T(x)\bar{a}(x), \quad (3.1)$$

where m is the number of terms of monomials; $\bar{a}(x)$ a vector of coefficients; and $\bar{p}^T(x)$ a complete polynomial basis, given by

$$\bar{a}(x) = \left(a_0(x) \ a_1(x) \ \ldots \ a_m(x) \right)^T, \quad (3.2)$$

$$\bar{p}(x) = \left(p_0(x) \ p_1(x) \ \ldots \ p_m(x) \right)^T = \left(1 \ x \ x^2 \ \ldots \ x^m \right)^T. \quad (3.3)$$

Figure 3.1: Cartesian grid discretisation.

The expression for $\bar{a}(x)$ can be obtained at each point x by minimizing the following weighted residual

$$J = \sum_{I=1}^{n} W(x - x_I) \left[\bar{p}^T(x_I)\bar{a}(x) - u^{(I)} \right]^2, \quad (3.4)$$

where $u^{(I)}$ is the nodal value of the field variable u at $x = x_I$; and n the number of nodes in the support domain of x where the weight function $W(x - x_I) \neq 0$. In the present chapter, the cubic spline weight function is used to construct
3.3 Moving least square approximation

MLS shape functions.

\[
W(d) = \begin{cases}
\frac{2}{3} - 4d^2 + 4d^3, & d \leq \frac{1}{2} \\
\frac{4}{3} - 4d + 4d^2 - \frac{4}{3}d, & \frac{1}{2} < d \leq 1 \\
0, & d > 1
\end{cases}
\] (3.5)

where \(d = |x - x_I|/d_w\) and \(d_w\) defines the size of the support domain. The minimization of the weighted residual \(J\) results in the following linear equation system

\[
A(x)\bar{u}(x) = B(x)\bar{u},
\] (3.6)

or

\[
\bar{u}(x) = A(x)^{-1}B(x)\bar{u},
\] (3.7)

where

\[
\bar{u} = \begin{pmatrix} u^{(1)} & u^{(2)} & \ldots & u^{(n)} \end{pmatrix}^T;
\] (3.8)

\[
A(x) = \sum_{I=1}^{n} W(x - x_I)\bar{p}(x_I)\bar{p}^T(x_I);
\] (3.9)

\[
B(x) = \begin{bmatrix} B_1 & B_2 & \ldots & B_n \end{bmatrix};
\] (3.10)

in which

\[
B_I = W(x - x_I)\bar{p}(x_I).
\] (3.11)

Substituting (3.7) into (3.1), \(u^h\) can be expressed as

\[
u^h(x) = \bar{\phi}^T(x)\bar{u},
\] (3.12)
where \(\tilde{\phi} \) is the vector of MLS shape functions and given by

\[
\tilde{\phi}(x) = \left(\tilde{p}^T A^{-1} B_1 \quad \tilde{p}^T A^{-1} B_2 \quad \ldots \quad \tilde{p}^T A^{-1} B_n \right)^T.
\] (3.13)

It should be noted that the MLS shape functions do not satisfy the Kronecker-\(\delta \) criterion, but possess a so-called partition of unity properties as follows.

\[
\sum_{I=1}^{n} \tilde{\phi}_I(x) = 1.
\] (3.14)

A new shape function possessing the Kronecker-\(\delta \) function properties is created through a technique as described in the following section.

3.4 Local moving least square - one dimensional integrated radial basis function network technique

A schematic outline of the LMLS-1D-IRBFN method is depicted in Figure 3.2. For brevity, the proposed method with 3-node support domains \((n = 3) \) and 3-node local 1D-IRBF networks \((n_s = 3) \) is presented here. On an \(x \)-grid line \([l] \), a global interpolant for the field variable at a grid point \(x_i \) is sought in the form

\[
u(x_i) = \sum_{j=1}^{n} \tilde{\phi}_j(x_i) u^{[j]}(x_i),\] (3.15)

where \(\{ \tilde{\phi}_j \}_{j=1}^{n} \) is a set of the partition of unity functions constructed using MLS approximants; \(u^{[j]}(x_i) \) the nodal function value obtained from a local interpolant represented by a 1D-IRBF network \([j]\); \(n \) the number of nodes in the support domain of \(x_i \). In (3.15), MLS approximants are presently based on
3.4 Local moving least square - one dimensional integrated radial basis function network technique

linear polynomials, which are defined in terms of 1 and \(x \). Relevant derivatives of \(u \) at \(x_i \) can be obtained by differentiating (3.15)

\[
\frac{\partial u(x_i)}{\partial x} = \sum_{j=1}^{n} \left(\frac{\partial \phi_j(x_i)}{\partial x} u^{[j]}(x_i) + \phi_j(x_i) \frac{\partial u^{[j]}(x_i)}{\partial x} \right),
\]

(3.16)

\[
\frac{\partial^2 u(x_i)}{\partial x^2} = \sum_{j=1}^{n} \left(\frac{\partial^2 \phi_j(x_i)}{\partial x^2} u^{[j]}(x_i) + 2 \frac{\partial \phi_j(x_i)}{\partial x} \frac{\partial u^{[j]}(x_i)}{\partial x} + \phi_j(x_i) \frac{\partial^2 u^{[j]}(x_i)}{\partial x^2} \right),
\]

(3.17)

where the values \(u^{[j]}(x_i) \), \(\partial u^{[j]}(x_i)/\partial x \) and \(\partial^2 u^{[j]}(x_i)/\partial x^2 \) are calculated from 1D-IRBFN networks with \(n_s \) nodes.

![Diagram](image)

Figure 3.2: LMLS-1D-IRBFN-3-node scheme, □ a typical \([j]\) node.

3.4.1 One-dimensional IRBFN

Consider a segment \([j]\) with \(n_s \) nodes on an \(x \)-grid line \([l]\) as shown in Figure 3.2. The variation of the nodal function \(u^{[j]} \) along this segment is sought in the IRBF form. The second-order derivative of \(u^{[j]} \) is decomposed into RBFs; the RBF network is then integrated once and twice to obtain the expressions for the
first-order derivative of \(u^{[j]} \) and the function \(u^{[j]} \) itself as follows.

\[
\frac{\partial^2 u^{[j]}(x)}{\partial x^2} = \sum_{k=1}^{n_s} w^{(k)} G^{(k)}(x) = \sum_{k=1}^{n_s} w^{(k)} H_{[2]}^{(k)}(x), \tag{3.18}
\]

\[
\frac{\partial u^{[j]}(x)}{\partial x} = \sum_{k=1}^{n_s} w^{(k)} H_{[1]}^{(k)}(x) + c_1, \tag{3.19}
\]

\[
u^{[j]}(x) = \sum_{k=1}^{n_s} w^{(k)} H_{[0]}^{(k)}(x) + c_1 x + c_2, \tag{3.20}
\]

where \(\{ w^{(k)} \}_{k=1}^{n_s} \) are RBF weights to be determined; \(\{ G^{(k)}(x) \}_{k=1}^{n_s} = \{ H_{[2]}^{(k)}(x) \}_{k=1}^{n_s} \) known RBFs; \(H_{[1]}^{(k)}(x) = \int H_{[2]}^{(k)}(x) dx; H_{[0]}^{(k)}(x) = \int H_{[1]}^{(k)}(x) dx; \) and \(c_1 \) and \(c_2 \) integration constants which are also unknown. An example of RBF, used in this work, is the multiquadrics \(G^{(k)}(x) = \sqrt{(x - x^{(k)})^2 + a^{(k)}_2}, a^{(k)} \) - the RBF width determined as \(a^{(k)} = \beta d^{(k)} \), \(\beta \) a positive factor, and \(d^{(k)} \) the distance from the \(k^{th} \) center to its nearest neighbour.

It is more convenient to work in the physical space than in the network-weight space. The RBF coefficients including two integration constants can be transformed into the physically meaningful nodal variable values through the following relation

\[
\bar{u}^{[j]} = \bar{H} \begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix}, \tag{3.21}
\]

where \(\bar{H} \) is an \(n_s \times (n_s + 2) \) matrix and given by

\[
\bar{H} = \begin{bmatrix}
H_{[0]}^{(1)}(x_1) & H_{[0]}^{(2)}(x_1) & \ldots & H_{[0]}^{(n_s)}(x_1) & x_1 & 1 \\
H_{[0]}^{(1)}(x_2) & H_{[0]}^{(2)}(x_2) & \ldots & H_{[0]}^{(n_s)}(x_2) & x_2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
H_{[0]}^{(1)}(x_{n_s}) & H_{[0]}^{(2)}(x_{n_s}) & \ldots & H_{[0]}^{(n_s)}(x_{n_s}) & x_{n_s} & 1
\end{bmatrix}; \tag{3.22}
\]

\[
\bar{u}^{[j]} = (u^{(1)}, u^{(2)}, \ldots, u^{(n_s)})^T; \bar{w} = (w^{(1)}, w^{(2)}, \ldots, w^{(n_s)})^T \text{ and } \bar{c} = (c_1, c_2)^T. \]

There are two possible transformation cases.
For a segment \([j]\) with only interior points: The direct use of (3.21) leads to an underdetermined system of equations

\[
\vec{u}^{[j]} = \vec{H} \begin{pmatrix} w \\ c \end{pmatrix} = \vec{C} \begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix},
\]

(3.23)

or

\[
\begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix} = \vec{C}^{-1} \vec{u}^{[j]},
\]

(3.24)

where \(\vec{C} = \vec{H}\) is the conversion matrix whose inverse can be found using the singular value decomposition (SVD) technique.

For a segment \([j]\) with interior and boundary points: Owing to the presence of \(c_1\) and \(c_2\), one can add an additional equation of the form

\[
f = \mathbf{K} \begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix}
\]

(3.25)

to equation system (3.21). In the case of Neumann boundary conditions, this subsystem can be used to impose a derivative boundary value at \(x = x_b\)

\[
f = \frac{\partial u(x_b)}{\partial x},
\]

(3.26)

\[
\mathbf{K} = \begin{bmatrix} H^{(1)}_{[1]}(x_b) & H^{(2)}_{[1]}(x_b) & \cdots & H^{(n_s)}_{[1]}(x_b) & 1 & 0 \end{bmatrix}.
\]

(3.27)

The conversion system can be written as

\[
\begin{pmatrix} \vec{u}^{[j]} \\ f \end{pmatrix} = \begin{bmatrix} \vec{H} \\ \mathbf{K} \end{bmatrix} \begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix} = \vec{C} \begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix},
\]

(3.28)

or

\[
\begin{pmatrix} \bar{w} \\ \bar{c} \end{pmatrix} = \vec{C}^{-1} \begin{pmatrix} \vec{u}^{[j]} \\ f \end{pmatrix}.
\]

(3.29)
It can be seen that (3.24) is a special case of (3.29), where \(f \) is simply set to null. By substituting Equation (3.29) into Equations (3.18)-(3.20), the second- and first-order derivatives and the function of the variable \(u^{[j]} \) are expressed in terms of nodal variable values as

\[
\frac{\partial^2 u^{[j]}(x)}{\partial x^2} = \left(H^{(1)}_{[2]}(x), H^{(2)}_{[2]}(x), \ldots, H^{(n_s)}_{[2]}(x) \right) \bar{C}^{-1} \begin{pmatrix} \bar{u}^{[j]} \\ f \end{pmatrix}, \tag{3.30}
\]

\[
\frac{\partial u^{[j]}(x)}{\partial x} = \left(H^{(1)}_{[1]}(x), H^{(2)}_{[1]}(x), \ldots, H^{(n_s)}_{[1]}(x) \right) \bar{C}^{-1} \begin{pmatrix} \bar{u}^{[j]} \\ f \end{pmatrix}, \tag{3.31}
\]

\[
u^{[j]}(x) = \left(H^{(1)}_{[0]}(x), H^{(2)}_{[0]}(x), \ldots, H^{(n_s)}_{[0]}(x) \right) \bar{C}^{-1} \begin{pmatrix} \bar{u}^{[j]} \\ f \end{pmatrix}, \tag{3.32}
\]

or

\[
\frac{\partial^2 u^{[j]}(x)}{\partial x^2} = \bar{d}_x^T \bar{u}^{[j]} + k_2(x), \tag{3.33}
\]

\[
\frac{\partial u^{[j]}(x)}{\partial x} = \bar{d}_x^T \bar{u}^{[j]} + k_1(x), \tag{3.34}
\]

\[
u^{[j]}(x) = \bar{d}_0^T \bar{u}^{[j]} + k_0(x), \tag{3.35}
\]

where \(k_0, k_1, k_2 \) are scalars whose values depend on \(x \) and the boundary value \(f \); and \(\bar{d}_0, \bar{d}_1, \bar{d}_2 \) known vectors of length \(n_s \).

By application of Equations (3.33) and (3.34) to \(n_s \) nodes on the segment \([j]\), the second- and first-order derivatives of \(u^{[j]} \) at node \(x_i \) are determined as

\[
\frac{\partial^2 u^{[j]}(x_i)}{\partial x^2} = \bar{D}_{2x(idk,:)} \bar{u}^{[j]} + \bar{k}_{2x(idk)}, \tag{3.36}
\]

\[
\frac{\partial u^{[j]}(x_i)}{\partial x} = \bar{D}_{1x(idk,:)} \bar{u}^{[j]} + \bar{k}_{1x(idk)}, \tag{3.37}
\]

\[
u^{[j]}(x_i) = \bar{D}_{0x(idk,:)} \bar{u}^{[j]} + \bar{k}_{0x(idk)} = \bar{I}_{(idk,:)} \bar{u}^{[j]}, \tag{3.38}
\]

where \(\bar{D}_{1x} \) and \(\bar{D}_{2x} \) are known matrices of dimension \(n_s \times n_s \); \(\bar{k}_{1x} \) and \(\bar{k}_{2x} \) known vectors of length \(n_s \); and \(idk \) the index number indicating the location of node \(x_i \) in the local network \([j]\). It is noted that \(\bar{D}_{0x} = \bar{I} \), where \(\bar{I} \) is an identity.
matrix of dimension $n_s \times n_s$ and $\bar{k}_{0x} = 0$. Therefore, the 1D-IRBFN shape function possesses the Kronecker-δ function properties.

3.4.2 Incorporation of MLS and 1D-IRBFN into the partition of unity framework

By substituting Equations (3.36)-(3.38) into Equations (3.15)-(3.17), the function $u(x_i)$ and its derivatives are expressed as

$$u(x_i) = \sum_{j=1}^{n} \bar{m}_{0x}^{[j]} \tilde{u}^{[j]}, \quad (3.39)$$

$$\frac{\partial u(x_i)}{\partial x} = \sum_{j=1}^{n} \left(\bar{m}_{1x}^{[j]} \tilde{u}^{[j]} + k_{1x}^{[j]} \right), \quad (3.40)$$

$$\frac{\partial^2 u(x_i)}{\partial x^2} = \sum_{j=1}^{n} \left(\bar{m}_{2x}^{[j]} \tilde{u}^{[j]} + k_{2x}^{[j]} \right), \quad (3.41)$$

where

$$\bar{m}_{0x}^{[j]} = \bar{\phi}_j(x_i) \bar{I}_{(idk,:)}; \quad (3.42)$$

$$\bar{m}_{1x}^{[j]} = \frac{\partial \bar{\phi}_j(x_i)}{\partial x} \bar{I}_{(idk,:)} + \bar{\phi}_j(x_i) \bar{D}_{1x(idk,:)}; \quad (3.43)$$

$$\bar{m}_{2x}^{[j]} = \frac{\partial^2 \bar{\phi}_j(x_i)}{\partial x^2} \bar{I}_{(idk,:)} + 2 \frac{\partial \bar{\phi}_j(x_i)}{\partial x} \bar{D}_{1x(idk,:)} + \bar{\phi}_j(x_i) \bar{D}_{2x(idk,:)}; \quad (3.44)$$

$$k_{1x}^{[j]} = \bar{\phi}_j(x_i) \bar{k}_{1x(idk)}; \quad (3.45)$$

$$k_{2x}^{[j]} = 2 \frac{\partial \bar{\phi}_j(x_i)}{\partial x} \bar{k}_{1x(idk)} + \bar{\phi}_j(x_i) \bar{k}_{2x(idk)}; \quad (3.46)$$

From Equations (3.14), (3.39) and (3.42), one can see that the LMLS-1D-IRBFN shape function possesses the Kronecker-δ function properties.
3.4 Local moving least square - one dimensional integrated radial basis function network technique

Equations (3.40) and (3.41) can be expressed as

\[
\frac{\partial u(x_i)}{\partial x} = \hat{m}_1^{[i]} u^{[i]} + k_1^{[i]}, \quad (3.47)
\]

\[
\frac{\partial^2 u(x_i)}{\partial x^2} = \hat{m}_2^{[i]} u^{[i]} + k_2^{[i]}, \quad (3.48)
\]

where \(u^{[i]} = (u^{(1)}, u^{(2)}, ..., u^{(n_r)})^T\); \(n_r\) is the number of nodes in the network \([i]\); \(k_1^{[i]}\) and \(k_2^{[i]}\) known scalars; and \(\hat{m}_1^{[i]}\) and \(\hat{m}_2^{[i]}\) known vectors of length \(n_r\), defined by

\[
\hat{m}_1^{[i]}(idj) = \bar{m}_1^{[i]}(idj) + \bar{m}_1^{[j]}, \quad j = 1, 2, ..., n \quad (3.49)
\]

\[
\hat{m}_2^{[i]}(idj) = \bar{m}_2^{[i]}(idj) + \bar{m}_2^{[j]}, \quad j = 1, 2, ..., n \quad (3.50)
\]

in which \(idj\) is the index vector mapping the location of nodes of the local network \([j]\) to that in the LMLS-1D-IRBF network \([i]\).

The values of first- and second-order derivatives of \(u\) with respect to \(x\) at the nodal points on the grid line \([l]\) are given by

\[
\frac{\partial \hat{u}}{\partial x} = \hat{M}_{1x}^{[l]} \hat{u}^{[l]} + \hat{k}_{1x}^{[l]}, \quad (3.51)
\]

\[
\frac{\partial^2 \hat{u}}{\partial x^2} = \hat{M}_{2x}^{[l]} \hat{u}^{[l]} + \hat{k}_{2x}^{[l]}, \quad (3.52)
\]

where

\[
\hat{u} = (u^{(1)}, u^{(2)}, ..., u^{(n_l)})^T; \quad (3.53)
\]

\[
\hat{M}_{1x}^{[l]}(i,idi) = \bar{m}_1^{[l]}; \quad (3.54)
\]

\[
\hat{M}_{2x}^{[l]}(i,idi) = \bar{m}_2^{[l]}; \quad (3.55)
\]

\[
\hat{k}_{1x}^{[l](i)} = k_1^{[l]}, \quad (3.56)
\]

\[
\hat{k}_{2x}^{[l](i)} = k_2^{[l]}, \quad (3.57)
\]

in which \(n_l\) is the number of nodes on the grid line \([l]\), and \(idi\) the index vector mapping the location of nodes of the local network \([i]\) to that in the grid line.
The values of first- and second-order derivatives of \(u \) with respect to \(x \) at the nodal points over the problem domain are given by

\[
\frac{\partial \tilde{u}}{\partial x} = \tilde{M}_{1x} \tilde{u} + \tilde{k}_{1x},
\]

(3.58)

\[
\frac{\partial^2 \tilde{u}}{\partial x^2} = \tilde{M}_{2x} \tilde{u} + \tilde{k}_{2x},
\]

(3.59)

where

\[
\tilde{u} = (u^{(1)}, u^{(2)}, ..., u^{(N_{ip})})^T;
\]

(3.60)

\[
\frac{\partial \tilde{u}}{\partial x} = \left(\frac{\partial u^{(1)}}{\partial x}, \frac{\partial u^{(2)}}{\partial x}, ..., \frac{\partial u^{(N_{ip})}}{\partial x} \right)^T;
\]

(3.61)

\[
\frac{\partial^2 \tilde{u}}{\partial x^2} = \left(\frac{\partial^2 u^{(1)}}{\partial x^2}, \frac{\partial^2 u^{(2)}}{\partial x^2}, ..., \frac{\partial^2 u^{(N_{ip})}}{\partial x^2} \right)^T;
\]

(3.62)

and \(\tilde{M}_{1x} \) and \(\tilde{M}_{2x} \) are known matrices of dimension \(N_{ip} \times N_{ip} \); \(\tilde{k}_{1x} \) and \(\tilde{k}_{2x} \) known vectors of length \(N_{ip} \); and \(N_{ip} \) the total number of interior nodal points.

The matrices \(\tilde{M}_{1x} \) and \(\tilde{M}_{2x} \) and the vectors \(\tilde{k}_{1x} \) and \(\tilde{k}_{2x} \) are formed as follows.

\[
\tilde{M}_{1x(idl,idl)} = \tilde{M}_{1x}^{[l]},
\]

(3.63)

\[
\tilde{M}_{2x(idl,idl)} = \tilde{M}_{2x}^{[l]},
\]

(3.64)

\[
\tilde{k}_{1x(idl)} = \tilde{k}_{1x}^{[l]},
\]

(3.65)

\[
\tilde{k}_{2x(idl)} = \tilde{k}_{2x}^{[l]},
\]

(3.66)

in which \(idl \) is the index vector mapping the location of nodes on the grid line \([l]\) to that in the whole grid.

Similarly, the values of the second- and first-order derivatives of \(u \) with respect
3.5 Governing equations for two-dimensional incompressible viscous flows

In this work we limit the analysis to two-dimensional problems and the governing equations for incompressible viscous flows can therefore be written in terms of stream function ψ and vorticity ω as (Glowinski, 2003)

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega, \tag{3.69}
\]

\[
\frac{1}{Re} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) = \frac{\partial \omega}{\partial t} + \left(\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} \right), \tag{3.70}
\]

where Re is the Reynolds number; t the time; and $(x, y)^T$ the position vector. The x and y components of the velocity vector can be defined in terms of the stream function as

\[
u = \frac{\partial \psi}{\partial y}, \tag{3.71}
\]

\[
u = -\frac{\partial \psi}{\partial x}. \tag{3.72}
\]

3.6 LMLS-1D-IRBFN discretisation of governing equations for incompressible viscous flows

The domain of interest is discretised using uniform Cartesian grids. With the backward Euler scheme for time discretisation, Equations (3.69) and (3.70) can
be expressed as
\[
\frac{\partial^2 \psi^{(n+1)}}{\partial x^2} + \frac{\partial^2 \psi^{(n+1)}}{\partial y^2} = -\omega^{(n)},
\]
\[
\frac{\Delta t}{Re} \left(\frac{\partial^2 \omega^{(n+1)}}{\partial x^2} + \frac{\partial^2 \omega^{(n+1)}}{\partial y^2} \right) - \omega^{(n+1)} = -\omega^{(n)} + \Delta t \left(\frac{\partial \psi^{(n)}}{\partial y} \frac{\partial \omega^{(n)}}{\partial x} - \frac{\partial \psi^{(n)}}{\partial x} \frac{\partial \omega^{(n)}}{\partial y} \right),
\]

where the superscripts \((n)\) and \((n+1)\) denote the time levels; and \(\Delta t\) the time discretisation step.

Making use of (3.58), (3.59), (3.67) and (3.68) and collocating the governing equations (3.73) and (3.74) at the interior points result in

\[
\tilde{E}_1 \tilde{\psi}^{(n+1)} = RHS_1, \quad (3.75)
\]
\[
\tilde{E}_2 \tilde{\omega}^{(n+1)} = RHS_2, \quad (3.76)
\]

where

\[
\tilde{E}_1 = \tilde{M}_{2x} + \tilde{M}_{2y}; \quad (3.77)
\]
\[
RHS_1 = -\omega^{(n)} - \left(\tilde{k}_{2x\psi} + \tilde{k}_{2y\psi} \right); \quad (3.78)
\]
\[
\tilde{E}_2 = \frac{\Delta t}{Re} \left(\tilde{M}_{2x} + \tilde{M}_{2y} - \tilde{I} \right); \quad (3.79)
\]
\[
RHS_2 = -\omega^{(n)} - \frac{\Delta t}{Re} \left(\tilde{k}_{2x\omega} + \tilde{k}_{2y\omega} \right)
+ \Delta t \left[\left(\tilde{M}_{1y\tilde{\psi}}^{(n)} + \tilde{k}_{1y\tilde{\psi}}^{(n)} \right) \cdot \left(\tilde{M}_{1x\tilde{\omega}}^{(n)} + \tilde{k}_{1x\tilde{\omega}}^{(n)} \right) - \left(\tilde{M}_{1x\tilde{\psi}}^{(n)} + \tilde{k}_{1x\tilde{\psi}}^{(n)} \right) \cdot \left(\tilde{M}_{1y\tilde{\omega}}^{(n)} + \tilde{k}_{1y\tilde{\omega}}^{(n)} \right) \right]; \quad (3.80)
\]

in which \(\tilde{k}_{1x\psi}, \tilde{k}_{2x\psi}, \tilde{k}_{1y\psi}, \tilde{k}_{2y\psi}, \tilde{k}_{1x\omega}, \tilde{k}_{2x\omega}, \tilde{k}_{1y\omega}, \tilde{k}_{2y\omega}\) are known vectors of length \(N_{ip}\).

The nonlinear system of equations (3.75) and (3.76) is solved using the pseudo-time stepping procedure as follows:

- **Step 1:** Guess the initial solution of vorticity \(\omega\).
- **Step 2:** Solve (3.75) for \(\psi\).
- **Step 3:** Compute the vorticity boundary conditions and the convection
• Step 4: Solve (3.76) for ω.

• Step 5: Check convergence criterion for ω

$$\sqrt{\frac{\sum_{i=1}^{N_{ip}} \left(\omega_i^{(t+1)} - \omega_i^{(t)} \right)^2}{\sum_{i=1}^{N_{ip}} \left(\omega_i^{(t+1)} \right)^2}} < TOL,$$

where TOL is a given tolerance and presently set to be 10^{-12}. If not converged, return to step 2. Otherwise, stop.

3.7 Numerical results and discussion

Several examples are investigated here to study the performance of the present method. The domains of interest are discretised using Cartesian grids. By using the LMLS-1D-IRBFN method to discretise governing equations and the LU decomposition technique to solve the resultant sparse system of simultaneous equations, the computational cost and data storage requirements are reduced. For the purpose of CPU times comparisons, all related computations are carried out on a single 2.4 GHz processor machine with 4 GB RAM.

3.7.1 Example 1: Two-dimensional Poisson equation in a square domain

The present method is first verified through the solution of the following 2D Poisson equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

(3.82)
defined on a square domain $0 \leq x, y \leq 1$ and subject to Dirichlet boundary conditions. The problem has the following exact solution

$$u_E = \frac{1}{\sinh(\pi)} \sin(\pi x) \sinh(\pi y).$$ \hspace{1cm} (3.83)

A uniform grid of $N_x \times N_y$ is employed to discretise the problem domain. Two cases of boundary conditions are considered as follows.

- **Case 1:** Dirichlet boundary conditions are imposed along all four edges.
- **Case 2:** Dirichlet boundary conditions are imposed along two horizontal edges and Neumann boundary conditions are imposed along two vertical edges.

These boundary conditions can be derived from the exact solution. The proposed LMLS-1D-IRBFN method with the following two approaches is considered.

- **Approach 1:** $n = 3$ and $n_s = 3$, called LMLS-1D-IRBFN-3-node.
- **Approach 2:** $n = 3$ and $n_s = 5$, called LMLS-1D-IRBFN-5-node.

Figure 3.3 presents the grid convergence study for Case 1 for the two approaches in comparison with those of FDM with central-difference scheme and the 1D-IRBFN method. The convergence study for Case 2 for the two approaches in comparison with those of the 1D-IRBFN method is shown in Figure 3.4. The convergence behaviours of FDM, 1D-IRBFN, Approach 1 and Approach 2 for Case 1 are $O(h^{2.05})$, $O(h^{3.16})$, $O(h^{1.78})$ and $O(h^{2.69})$, respectively. The convergence behaviour of 1D-IRBFN, Approach 1 and Approach 2 for Case 2 are $O(h^{1.98})$, $O(h^{1.84})$ and $O(h^{1.89})$, respectively. The numerical results show that the LMLS-1D-IRBFN-5-node is much more accurate than FDM and LMLS-1D-IRBFN-3-node, and slightly better than those of its global counterpart, i.e. 1D-IRBFN method.
3.7 Numerical results and discussion

Figure 3.3: Poisson equation in a square domain subject to Dirichlet boundary conditions: convergence study for 1D-IRBFN, Approach 1 with $\beta = 10$ and Approach 2 with $\beta = 15$. FDM (central difference) results are included for comparison.

Table 3.1 presents the comparison of the number of nonzero elements per row of the system matrix (N_{nzpr}) and condition number (cond) among the FDM, two present approaches and the 1D-IRBFN for Case 1, while Table 3.2 shows the comparison of CPU time and percentage of nonzero elements of the system matrix $\epsilon = (N_{nz}/N_{total}) \times 100$ (N_{nz} and N_{total}: the number of nonzero elements and the total number of elements of the system matrix, respectively) among these methods. The comparison of condition number for Case 2 is given in Table 3.3. The condition numbers of 1D-IRBFN, Approach 1 and Approach 2 are of the same order of magnitude and at most one order of magnitude larger than those of FDM. The number of nonzero elements per row of the system matrix N_{nzpr} of the FDM with central-difference scheme, LMLS-1D-IRBF-3-node and LMLS-1D-IRBF-5-node methods are 5, 9, and 13, respectively and less than that of the 1D-IRBFN method. Therefore, for a given grid size, the CPU time and memory requirements of Approach 2 are larger than those of Approach
1D-IRBFN, Approach 1, O(h^{1.98})

Approach 1, O(h^{1.84})

Approach 2, O(h^{1.89})

Figure 3.4: Poisson equation in a square domain subject to Dirichlet and Neumann boundary conditions: convergence study for 1D-IRBFN, Approach 1 with β = 10 and Approach 2 with β = 5.

1 and FDM, and significantly less than those of the 1D-IRBFN method. For example, for a grid of 121 × 121, the CPU time and the ϵ of Approach 2 are 38.7 times and 2.6 times larger than those of the FDM, respectively, and 89.6 times and 18.5 times less than those of the 1D-IRBFN method, respectively. It is noted that for a given grid size the present Approach 2 is slower than the FDM. However, the present Approach 2 achieves a given level of accuracy with a coarser grid and hence more efficient. For example, as shown in Figure 3.3 and Table 3.2, the present Approach 2 with grid=21 × 21 yields better accuracy ($Ne = 6.88e - 6$) in 0.88 seconds than the FDM with grid=121 × 121 ($Ne = 3.49e - 5$) in 1.74 seconds.
Table 3.1: Poisson equation in a square domain subject to Dirichlet boundary conditions: comparisons (with FDM and 1D-IRBFN) of the number of nonzero elements per row of the system matrix (N_{nzpr}) and condition number ($cond$). The system matrix is stored in a sparse matrix format.

<table>
<thead>
<tr>
<th>Grid</th>
<th>System matrix</th>
<th>N_{nzpr}</th>
<th>$cond$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FDM</td>
<td>ID-IRBFN</td>
</tr>
<tr>
<td>11 × 11</td>
<td>81 × 81</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>21 × 21</td>
<td>361 × 361</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>31 × 31</td>
<td>841 × 841</td>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>41 × 41</td>
<td>1521 × 1521</td>
<td>5</td>
<td>81</td>
</tr>
<tr>
<td>51 × 51</td>
<td>2401 × 2401</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>61 × 61</td>
<td>3481 × 3481</td>
<td>5</td>
<td>121</td>
</tr>
<tr>
<td>71 × 71</td>
<td>4761 × 4761</td>
<td>5</td>
<td>141</td>
</tr>
<tr>
<td>81 × 81</td>
<td>6241 × 6241</td>
<td>5</td>
<td>161</td>
</tr>
<tr>
<td>91 × 91</td>
<td>7921 × 7921</td>
<td>5</td>
<td>181</td>
</tr>
<tr>
<td>101 × 101</td>
<td>9801 × 9801</td>
<td>5</td>
<td>201</td>
</tr>
<tr>
<td>111 × 111</td>
<td>11881 × 11881</td>
<td>5</td>
<td>221</td>
</tr>
<tr>
<td>121 × 121</td>
<td>14161 × 14161</td>
<td>5</td>
<td>241</td>
</tr>
</tbody>
</table>
Table 3.2: Poisson equation in a square domain subject to Dirichlet boundary conditions: comparison (with FDM and 1D-IRBFN) of CPU time and percentage of nonzero elements of the system matrix (ε). Note that for a given grid size the present Approach 2 is slower than the FDM. However, the present Approach 2 achieves a given level of accuracy with a coarser grid and hence more efficient. For example, as shown in Figure 3.3, the present Approach 2 with grid=21 \times 21 yields better accuracy ($Ne = 6.88e - 6$) in 0.88 seconds than the FDM with grid=121 \times 121 ($Ne = 3.49e - 5$) in 1.74 seconds.

<table>
<thead>
<tr>
<th>Grid</th>
<th>CPU time (seconds) for all shape functions</th>
<th>Total CPU time (seconds)</th>
<th>ε(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FDM</td>
<td>1D-IRBFN</td>
<td>App. 1</td>
</tr>
<tr>
<td>11 \times 11</td>
<td>0.00</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>21 \times 21</td>
<td>0.00</td>
<td>0.06</td>
<td>0.53</td>
</tr>
<tr>
<td>31 \times 31</td>
<td>0.01</td>
<td>0.39</td>
<td>1.31</td>
</tr>
<tr>
<td>41 \times 41</td>
<td>0.03</td>
<td>2.12</td>
<td>2.54</td>
</tr>
<tr>
<td>51 \times 51</td>
<td>0.05</td>
<td>8.58</td>
<td>4.35</td>
</tr>
<tr>
<td>61 \times 61</td>
<td>0.10</td>
<td>25.98</td>
<td>6.82</td>
</tr>
<tr>
<td>71 \times 71</td>
<td>0.18</td>
<td>66.68</td>
<td>10.01</td>
</tr>
<tr>
<td>81 \times 81</td>
<td>0.30</td>
<td>169.14</td>
<td>14.08</td>
</tr>
<tr>
<td>91 \times 91</td>
<td>0.46</td>
<td>462.68</td>
<td>19.15</td>
</tr>
<tr>
<td>101 \times 101</td>
<td>0.69</td>
<td>1073.42</td>
<td>25.36</td>
</tr>
<tr>
<td>111 \times 111</td>
<td>1.00</td>
<td>2202.37</td>
<td>32.84</td>
</tr>
<tr>
<td>121 \times 121</td>
<td>1.43</td>
<td>4959.75</td>
<td>41.74</td>
</tr>
</tbody>
</table>
3.7 Numerical results and discussion

Table 3.3: Poisson equation in a square domain subject to Dirichlet and Neumann boundary conditions: comparison condition number (cond).

<table>
<thead>
<tr>
<th>Grid</th>
<th>1D-IRBFN</th>
<th>App. 1</th>
<th>App. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 × 11</td>
<td>3.87E+02</td>
<td>3.70E+02</td>
<td>4.55E+02</td>
</tr>
<tr>
<td>21 × 21</td>
<td>1.41E+03</td>
<td>1.36E+03</td>
<td>1.63E+03</td>
</tr>
<tr>
<td>31 × 31</td>
<td>3.10E+03</td>
<td>2.94E+03</td>
<td>3.53E+03</td>
</tr>
<tr>
<td>41 × 41</td>
<td>5.45E+03</td>
<td>5.12E+03</td>
<td>6.14E+03</td>
</tr>
<tr>
<td>51 × 51</td>
<td>8.45E+03</td>
<td>7.89E+03</td>
<td>9.47E+03</td>
</tr>
<tr>
<td>61 × 61</td>
<td>1.21E+04</td>
<td>1.13E+04</td>
<td>1.35E+04</td>
</tr>
<tr>
<td>71 × 71</td>
<td>1.64E+04</td>
<td>1.52E+04</td>
<td>1.83E+04</td>
</tr>
<tr>
<td>81 × 81</td>
<td>2.14E+04</td>
<td>1.98E+04</td>
<td>2.37E+04</td>
</tr>
<tr>
<td>91 × 91</td>
<td>2.70E+04</td>
<td>2.49E+04</td>
<td>2.99E+04</td>
</tr>
<tr>
<td>101 × 101</td>
<td>3.33E+04</td>
<td>3.07E+04</td>
<td>3.68E+04</td>
</tr>
<tr>
<td>111 × 111</td>
<td>4.02E+04</td>
<td>3.70E+04</td>
<td>4.45E+04</td>
</tr>
<tr>
<td>121 × 121</td>
<td>4.78E+04</td>
<td>4.40E+04</td>
<td>5.28E+04</td>
</tr>
</tbody>
</table>

Approach 2 yields much more accurate results than Approach 1 and FDM with central-difference scheme and is significantly more efficient than 1D-IRBFN in terms of computational cost, as grid density increases. Therefore, the remaining examples will be investigated using Approach 2, i.e. LMLS-1D-IRBFN-5-node.

3.7.2 Example 2: Two-dimensional Poisson equation in a square domain with a circular hole

This example is concerned with the following 2D Poisson equation

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -8\pi^2 \sin(2\pi x) \sin(2\pi y),
\]

(3.84)

defined on a square domain with a circular hole as shown in Figure 3.5 and subject to Dirichlet boundary conditions. The problem has the following exact solution

\[
u_E = \sin(2\pi x) \sin(2\pi y),
\]

(3.85)

from which the boundary values of \(u \) can be derived.
3.7 Numerical results and discussion

Figure 3.5: A square domain with a circular hole.

The grid convergence study for LMLS-1D-IRBFN and 1D-IRBFN methods is presented in Figure 3.6. Table 3.4 describes the relative error norms (Ne) and condition number ($cond$) of the present method in comparison with those of 1D-IRBFN method. The numerical results showed that the present method is not as accurate as the 1D-IRBFN method, but has a higher convergence rate (error norm of $O(h^{3.70})$) than the 1D-IRBFN method (error norm of $O(h^{3.00})$). Table 3.5 presents the comparison of CPU time and percentage of nonzero elements of the system matrix (ϵ) between the 1D-IRBFN and LMLS-1D-IRBFN methods. The present method is much more efficient than the 1D-IRBFN method in terms of CPU time (e.g. 101.3 times for a grid of 129×129) and memory requirements (e.g. 17.2 times for a grid of 129×129), thus the grid size can be refined to obtain more accurate solutions as shown in Figure 3.6.
3.7 Numerical results and discussion

Table 3.4: Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: comparison of relative error norm (Ne) and condition number ($cond$).

<table>
<thead>
<tr>
<th>Grid</th>
<th>Ne</th>
<th>cond</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1D-IRBFN</td>
<td>Present</td>
</tr>
<tr>
<td>25 x 25</td>
<td>8.62E-03</td>
<td>4.86E-02</td>
</tr>
<tr>
<td>33 x 33</td>
<td>3.43E-03</td>
<td>2.01E-02</td>
</tr>
<tr>
<td>41 x 41</td>
<td>1.72E-03</td>
<td>9.12E-03</td>
</tr>
<tr>
<td>49 x 49</td>
<td>9.95E-04</td>
<td>4.61E-03</td>
</tr>
<tr>
<td>57 x 57</td>
<td>6.29E-04</td>
<td>2.57E-03</td>
</tr>
<tr>
<td>65 x 65</td>
<td>4.27E-04</td>
<td>1.54E-03</td>
</tr>
<tr>
<td>73 x 73</td>
<td>2.98E-04</td>
<td>9.80E-04</td>
</tr>
<tr>
<td>81 x 81</td>
<td>1.91E-04</td>
<td>6.55E-04</td>
</tr>
<tr>
<td>89 x 89</td>
<td>1.65E-04</td>
<td>4.55E-04</td>
</tr>
<tr>
<td>97 x 97</td>
<td>1.28E-04</td>
<td>3.27E-04</td>
</tr>
<tr>
<td>105 x 105</td>
<td>1.00E-04</td>
<td>2.41E-04</td>
</tr>
<tr>
<td>113 x 113</td>
<td>8.02E-05</td>
<td>1.83E-04</td>
</tr>
<tr>
<td>121 x 121</td>
<td>6.53E-05</td>
<td>1.41E-04</td>
</tr>
<tr>
<td>129 x 129</td>
<td>5.39E-05</td>
<td>1.11E-04</td>
</tr>
</tbody>
</table>

Table 3.5: Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: comparison of CPU time and percentage of nonzero elements of the system matrix (ϵ).

<table>
<thead>
<tr>
<th>Grid</th>
<th>CPU time (seconds)</th>
<th>ϵ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1D-IRBFN</td>
<td>Present</td>
</tr>
<tr>
<td>25 x 25</td>
<td>0.39</td>
<td>1.71</td>
</tr>
<tr>
<td>33 x 33</td>
<td>0.89</td>
<td>2.71</td>
</tr>
<tr>
<td>41 x 41</td>
<td>3.18</td>
<td>4.41</td>
</tr>
<tr>
<td>49 x 49</td>
<td>9.68</td>
<td>6.65</td>
</tr>
<tr>
<td>57 x 57</td>
<td>24.72</td>
<td>9.49</td>
</tr>
<tr>
<td>65 x 65</td>
<td>55.88</td>
<td>13.02</td>
</tr>
<tr>
<td>73 x 73</td>
<td>115.22</td>
<td>17.27</td>
</tr>
<tr>
<td>81 x 81</td>
<td>222.04</td>
<td>22.56</td>
</tr>
<tr>
<td>89 x 89</td>
<td>464.42</td>
<td>28.76</td>
</tr>
<tr>
<td>97 x 97</td>
<td>946.15</td>
<td>35.96</td>
</tr>
<tr>
<td>105 x 105</td>
<td>1793.67</td>
<td>44.39</td>
</tr>
<tr>
<td>113 x 113</td>
<td>3153.54</td>
<td>54.16</td>
</tr>
<tr>
<td>121 x 121</td>
<td>5140.94</td>
<td>65.55</td>
</tr>
<tr>
<td>129 x 129</td>
<td>7937.85</td>
<td>78.39</td>
</tr>
</tbody>
</table>
3.7 Numerical results and discussion

In comparing the convergence behaviours in Example 1 (homogeneous Poisson equation on simply-connected domain) and Example 2 (non-homogeneous Poisson equation on multiply-connected domain), it is observed that the overall convergence rate of Approach 2 for the former is 2.69 and that for the latter is 3.70. At first glance, the results might seem strange. However, it is observed that to achieve similar accuracy (Ne of $O(10^{-5})$), the convergence rates are very similar, i.e. 3.72 for Example 1 and 3.70 for Example 2. In Example 1, the shape of solution is relatively simple and the method can achieve even higher accuracy (Ne of $O(10^{-7})$). However, at this higher level of accuracy, the local convergence rate decreases, causing a lower overall convergence rate as described above.
3.7 Numerical results and discussion

3.7.3 Example 3: Lid-driven cavity flow

The cavity is taken to be a unit square with the lid sliding from left to right at a unit velocity as shown in Figure 3.7. The boundary conditions for stream function ψ are defined by

$$\psi = 0, \quad \text{on} \quad x = 0, x = 1, y = 0, y = 1,$$

$$\frac{\partial \psi}{\partial x} = 0, \quad \text{on} \quad x = 0, x = 1,$$

$$\frac{\partial \psi}{\partial y} = 0, \quad \text{on} \quad y = 0,$$

$$\frac{\partial \psi}{\partial y} = 1, \quad \text{on} \quad y = 1.$$

(3.86) (3.87) (3.88) (3.89)

It is noted that only the Dirichlet boundary conditions (3.86) are used for solving (3.69), while the Neumann boundary conditions (3.87)-(3.89) are used to derive computational vorticity boundary conditions for solving (3.70).

![Figure 3.7: Lid-driven cavity flow: problem geometry and boundary conditions.](image)

It is well-known that the major difficulties of lid-driven cavity flow simulation are: (i) the presence of singularities at two of the corners, which makes it difficult to predict the solution accurately; and (ii) the dominant convection terms, when dealing with high Re, which can cause oscillatory solutions if an improper scheme is used or computational grids are not sufficiently refined. The
grid convergence study is first conducted for the lid-driven cavity flow problem with Re of 1000 using following two approaches.

- Approach 1: The convection terms are calculated using LMLS-1D-IRBFN technique.
- Approach 2: The convection terms are calculated using 1D-IRBFN technique.

Table 3.6 shows the grid convergence study of the extrema of the horizontal and vertical velocity profiles along the center lines of the cavity for Approach 1 in comparison with the results of FDMs (Ghia et al., 1982; Bruneau and Jouron, 1990), 1D-IRBFN (Mai-Duy and Tran-Cong, 2009b) and spectral benchmark solutions (Botella and Peyret, 1998). The second-order accurate central finite-difference approximation was employed to approximate the linear terms in both FDMs mentioned above (Ghia et al., 1982; Bruneau and Jouron, 1990), while the nonlinear convection terms were discretised by using a first-order accurate upwind difference scheme including its second-order accurate term as a deferred correction in FDM (Ghia et al., 1982) and uncentered second-order differences in FDM (Bruneau and Jouron, 1990). In Table 3.6, the percentage errors ($\varepsilon = (V_m - V_s) \times 100/V_s$) of the extremal velocities (V_m) based on the corresponding spectral benchmark solutions (V_s) (Botella and Peyret, 1998) are given. It can be seen that these errors reduce with increasing grid densities. The orders of convergence are 2.42, 2.61 and 2.92 for the minimum horizontal velocity u_{min}, the maximum vertical velocity v_{max} and the minimum vertical velocity v_{min} along the center lines, respectively. The present results for a grid of 101×101 are more accurate than those of FDMs with more refined grids (Ghia et al., 1982; Bruneau and Jouron, 1990), but less than those of 1D-IRBFN (Mai-Duy and Tran-Cong, 2009b). Table 3.7 describes comparisons of the number of nonzero elements per row of the system matrix (N_{nzpr}), number of iterations ($N_{iteration}$) and total CPU time (T_{total}) required to obtain the converged solution.
with $TOL = 10^{-12}$. The time step Δt is set to be 5×10^{-3} for all cases. Note that for a given grid size the present approach is slower than the FDM. However, the present approach achieves a given level of accuracy with a coarser grid and hence more efficient. For example, as shown in Tables 3.6 and 3.7, the present approach with grid=81×81 yields better accuracy in 1559.77 seconds than the FDM with grid=129×129 in 1733.02 seconds.

The corresponding grid convergence study for Approach 2 is given in Table 3.8. The orders of convergence are 3.80, 3.26 and 4.26 for u_{min}, v_{max} and v_{min}, respectively. It is interesting to see that Approach 2 yields more accurate results than Approach 1 and the 1D-IRBFN method, and the convergence orders of Approach 2 are higher than those of Approach 1. Approach 2 is employed to study the cases with high Reynolds numbers ($Re = 3200$ and 7500). The contours of stream function and vorticity of the flow field inside the cavity at $Re = 1000$, 3200 and 7500 are shown in Figure 3.8. The vertical and horizontal velocities along the horizontal and vertical center lines at $Re = 1000$, 3200 and 7500 are given in Figure 3.9. These figures show that the current results are in good agreement with benchmark solutions of Ghia et al. (1982) and Botella and Peyret (1998).
Table 3.6: Lid-driven cavity flow, $Re = 1000$: the grid convergence study and comparison of extrema of velocity profiles along the center lines. The convection terms are calculated using LMLS-1D-IRBFN technique. Note that “Error” is relative to a Benchmark solution.

<table>
<thead>
<tr>
<th>Grid</th>
<th>u_{min}</th>
<th>Error (%)</th>
<th>v</th>
<th>v_{max}</th>
<th>Error (%)</th>
<th>x</th>
<th>v_{min}</th>
<th>Error (%)</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>-0.33342</td>
<td>14.193</td>
<td>0.333</td>
<td>0.27403</td>
<td>27.301</td>
<td>0.229</td>
<td>-0.34690</td>
<td>34.184</td>
<td>0.227</td>
</tr>
<tr>
<td>21 × 21</td>
<td>-0.33043</td>
<td>14.962</td>
<td>0.202</td>
<td>0.32097</td>
<td>14.848</td>
<td>0.172</td>
<td>-0.43390</td>
<td>17.678</td>
<td>0.888</td>
</tr>
<tr>
<td>31 × 31</td>
<td>-0.35408</td>
<td>8.876</td>
<td>0.183</td>
<td>0.34304</td>
<td>8.993</td>
<td>0.165</td>
<td>-0.47541</td>
<td>9.804</td>
<td>0.901</td>
</tr>
<tr>
<td>41 × 41</td>
<td>-0.36903</td>
<td>5.029</td>
<td>0.177</td>
<td>0.35730</td>
<td>5.211</td>
<td>0.162</td>
<td>-0.49891</td>
<td>5.345</td>
<td>0.906</td>
</tr>
<tr>
<td>51 × 51</td>
<td>-0.37750</td>
<td>2.848</td>
<td>0.174</td>
<td>0.36561</td>
<td>3.006</td>
<td>0.160</td>
<td>-0.51164</td>
<td>2.930</td>
<td>0.907</td>
</tr>
<tr>
<td>61 × 61</td>
<td>-0.38218</td>
<td>1.644</td>
<td>0.173</td>
<td>0.37027</td>
<td>1.769</td>
<td>0.159</td>
<td>-0.51846</td>
<td>1.635</td>
<td>0.908</td>
</tr>
<tr>
<td>71 × 71</td>
<td>-0.38478</td>
<td>0.976</td>
<td>0.172</td>
<td>0.37290</td>
<td>1.072</td>
<td>0.159</td>
<td>-0.52215</td>
<td>0.935</td>
<td>0.909</td>
</tr>
<tr>
<td>81 × 81</td>
<td>-0.38626</td>
<td>0.595</td>
<td>0.172</td>
<td>0.37444</td>
<td>0.670</td>
<td>0.158</td>
<td>-0.52420</td>
<td>0.547</td>
<td>0.909</td>
</tr>
<tr>
<td>91 × 91</td>
<td>-0.38712</td>
<td>0.373</td>
<td>0.172</td>
<td>0.37531</td>
<td>0.432</td>
<td>0.158</td>
<td>-0.52536</td>
<td>0.326</td>
<td>0.909</td>
</tr>
<tr>
<td>101 × 101</td>
<td>-0.38772</td>
<td>0.218</td>
<td>0.172</td>
<td>0.37601</td>
<td>0.247</td>
<td>0.158</td>
<td>-0.52598</td>
<td>0.288</td>
<td>0.909</td>
</tr>
<tr>
<td>1D-IRBFN (Mai-Duy and Tran-Cong, 2009b)</td>
<td>-0.38289</td>
<td>1.462</td>
<td>0.172</td>
<td>0.37095</td>
<td>1.589</td>
<td>0.158</td>
<td>-0.52598</td>
<td>2.197</td>
<td>0.906</td>
</tr>
<tr>
<td>FDM ($\psi - \omega$) (Ghia et al., 1982)</td>
<td>-0.37640</td>
<td>3.132</td>
<td>0.160</td>
<td>0.36650</td>
<td>2.770</td>
<td>0.152</td>
<td>-0.52080</td>
<td>1.192</td>
<td>0.910</td>
</tr>
<tr>
<td>FDM ($u - p$) (Bruneau and Jouron, 1990)</td>
<td>-0.38857</td>
<td>0.172</td>
<td>0.37694</td>
<td>0.158</td>
<td>-0.52708</td>
<td>0.909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark (Botella and Peyret, 1998)</td>
<td>-0.38772</td>
<td>0.218</td>
<td>0.172</td>
<td>0.37601</td>
<td>0.247</td>
<td>0.158</td>
<td>-0.52598</td>
<td>0.288</td>
<td>0.909</td>
</tr>
</tbody>
</table>

Order of convergence: 2.42, 2.61, 2.92
3.7 Numerical results and discussion

Table 3.7: Lid-driven cavity flow, $Re = 1000$: comparisons of the number of nonzero elements per row of the system matrix (N_{nzpr}), number of iterations ($N_{iteration}$) and total CPU time (T_{total}) required to obtain the converged solution with $TOL = 10^{-12}$. The time step Δt is set to be 5×10^{-3} for all cases. Note that for a given grid size the present approach is slower than the FDM. However, the present approach achieves a given level of accuracy with a coarser grid and hence more efficient. For example, as shown in Table 3.6, the present approach with grid=81×81 yields better accuracy in 1559.77 seconds than the FDM with grid=129×129 in 1733.02 seconds.

<table>
<thead>
<tr>
<th>Grid</th>
<th>System matrix</th>
<th>N_{nzpr}</th>
<th>$N_{iteration}$</th>
<th>$T_{total}(s)$</th>
<th>Grid</th>
<th>System matrix</th>
<th>N_{nzpr}</th>
<th>$N_{iteration}$</th>
<th>$T_{total}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 x 21</td>
<td>361 x 361</td>
<td>5</td>
<td>52207</td>
<td>36.46</td>
<td>21 x 21</td>
<td>361 x 361</td>
<td>5</td>
<td>51088</td>
<td>43.66</td>
</tr>
<tr>
<td>31 x 31</td>
<td>841 x 841</td>
<td>5</td>
<td>44914</td>
<td>45.67</td>
<td>31 x 31</td>
<td>841 x 841</td>
<td>5</td>
<td>40590</td>
<td>63.48</td>
</tr>
<tr>
<td>41 x 41</td>
<td>1521 x 1521</td>
<td>5</td>
<td>41703</td>
<td>68.59</td>
<td>41 x 41</td>
<td>1521 x 1521</td>
<td>5</td>
<td>43047</td>
<td>220.69</td>
</tr>
<tr>
<td>51 x 51</td>
<td>2401 x 2401</td>
<td>5</td>
<td>36467</td>
<td>148.10</td>
<td>51 x 51</td>
<td>2401 x 2401</td>
<td>5</td>
<td>44513</td>
<td>452.89</td>
</tr>
<tr>
<td>61 x 61</td>
<td>3481 x 3481</td>
<td>5</td>
<td>39591</td>
<td>250.27</td>
<td>61 x 61</td>
<td>3481 x 3481</td>
<td>5</td>
<td>45239</td>
<td>781.17</td>
</tr>
<tr>
<td>71 x 71</td>
<td>4761 x 4761</td>
<td>5</td>
<td>41803</td>
<td>354.93</td>
<td>71 x 71</td>
<td>4761 x 4761</td>
<td>5</td>
<td>45569</td>
<td>884.19</td>
</tr>
<tr>
<td>81 x 81</td>
<td>6241 x 6241</td>
<td>5</td>
<td>42893</td>
<td>482.21</td>
<td>81 x 81</td>
<td>6241 x 6241</td>
<td>5</td>
<td>45714</td>
<td>1559.77</td>
</tr>
<tr>
<td>91 x 91</td>
<td>7921 x 7921</td>
<td>5</td>
<td>43568</td>
<td>679.77</td>
<td>91 x 91</td>
<td>7921 x 7921</td>
<td>5</td>
<td>45779</td>
<td>2356.15</td>
</tr>
<tr>
<td>101 x 101</td>
<td>9801 x 9801</td>
<td>5</td>
<td>44028</td>
<td>898.53</td>
<td>101 x 101</td>
<td>9801 x 9801</td>
<td>5</td>
<td>45807</td>
<td>2964.84</td>
</tr>
<tr>
<td>111 x 111</td>
<td>9801 x 9801</td>
<td>5</td>
<td>44360</td>
<td>1207.33</td>
<td>111 x 111</td>
<td>9801 x 9801</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>121 x 121</td>
<td>9801 x 9801</td>
<td>5</td>
<td>44608</td>
<td>1433.07</td>
<td>121 x 121</td>
<td>9801 x 9801</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>129 x 129</td>
<td>9801 x 9801</td>
<td>5</td>
<td>44764</td>
<td>1733.02</td>
<td>129 x 129</td>
<td>9801 x 9801</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3.8: Lid-driven cavity flow, \(Re = 1000 \): the grid convergence study and comparison of extrema of horizontal and vertical velocity profiles along the center lines. The convection terms are calculated using 1D-IRBFN technique. Note that “Error” is relative to a Benchmark solution.

<table>
<thead>
<tr>
<th>Grid</th>
<th>(u_{\text{min}})</th>
<th>Error (%)</th>
<th>(y)</th>
<th>(v_{\text{max}})</th>
<th>Error (%)</th>
<th>(x)</th>
<th>(v_{\text{min}})</th>
<th>Error (%)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 \times 21</td>
<td>-0.30543</td>
<td>21.397</td>
<td>0.223</td>
<td>0.29460</td>
<td>21.344</td>
<td>0.181</td>
<td>-0.39550</td>
<td>24.963</td>
<td>0.866</td>
</tr>
<tr>
<td>31 \times 31</td>
<td>-0.35522</td>
<td>8.583</td>
<td>0.179</td>
<td>0.34326</td>
<td>8.936</td>
<td>0.166</td>
<td>-0.47452</td>
<td>9.971</td>
<td>0.900</td>
</tr>
<tr>
<td>41 \times 41</td>
<td>-0.37207</td>
<td>4.245</td>
<td>0.173</td>
<td>0.35938</td>
<td>4.660</td>
<td>0.162</td>
<td>-0.50276</td>
<td>4.615</td>
<td>0.906</td>
</tr>
<tr>
<td>51 \times 51</td>
<td>-0.38005</td>
<td>2.193</td>
<td>0.172</td>
<td>0.36744</td>
<td>2.519</td>
<td>0.160</td>
<td>-0.51576</td>
<td>2.147</td>
<td>0.908</td>
</tr>
<tr>
<td>61 \times 61</td>
<td>-0.38423</td>
<td>1.117</td>
<td>0.171</td>
<td>0.37183</td>
<td>1.356</td>
<td>0.159</td>
<td>-0.52208</td>
<td>0.949</td>
<td>0.909</td>
</tr>
<tr>
<td>71 \times 71</td>
<td>-0.38642</td>
<td>0.552</td>
<td>0.171</td>
<td>0.37421</td>
<td>0.725</td>
<td>0.158</td>
<td>-0.52512</td>
<td>0.371</td>
<td>0.909</td>
</tr>
<tr>
<td>81 \times 81</td>
<td>-0.38756</td>
<td>0.259</td>
<td>0.171</td>
<td>0.37549</td>
<td>0.385</td>
<td>0.158</td>
<td>-0.52655</td>
<td>0.100</td>
<td>0.909</td>
</tr>
<tr>
<td>91 \times 91</td>
<td>-0.38815</td>
<td>0.032</td>
<td>0.171</td>
<td>0.37618</td>
<td>0.203</td>
<td>0.158</td>
<td>-0.52720</td>
<td>0.022</td>
<td>0.909</td>
</tr>
<tr>
<td>101 \times 101</td>
<td>-0.38845</td>
<td>0.032</td>
<td>0.171</td>
<td>0.37655</td>
<td>0.104</td>
<td>0.158</td>
<td>-0.52746</td>
<td>0.073</td>
<td>0.909</td>
</tr>
<tr>
<td>1D-IRBFN (Mai-Duy and Tran-Cong, 2009b)</td>
<td>101 \times 101</td>
<td>-0.38772</td>
<td>0.218</td>
<td>0.172</td>
<td>0.37601</td>
<td>0.247</td>
<td>0.158</td>
<td>-0.52598</td>
<td>0.208</td>
</tr>
<tr>
<td>FDM ((\psi - \omega)) (Ghia et al., 1982)</td>
<td>129 \times 129</td>
<td>-0.38289</td>
<td>1.462</td>
<td>0.172</td>
<td>0.37095</td>
<td>1.589</td>
<td>0.156</td>
<td>-0.51550</td>
<td>2.197</td>
</tr>
<tr>
<td>FDM ((u - p)) (Bruneau and Jouron, 1990)</td>
<td>256 \times 256</td>
<td>-0.37640</td>
<td>3.132</td>
<td>0.160</td>
<td>0.36650</td>
<td>2.770</td>
<td>0.152</td>
<td>-0.52080</td>
<td>1.192</td>
</tr>
<tr>
<td>Benchmark (Botella and Peyret, 1998)</td>
<td>-0.38857</td>
<td>-0.172</td>
<td>0.37694</td>
<td>-0.158</td>
<td>-0.52708</td>
<td>-0.158</td>
<td>-0.52708</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Present Order of convergence 3.80 3.26 4.26
3.7 Numerical results and discussion

Figure 3.8: Lid-driven cavity flow: contours of stream function (left) and vorticity (right) for different Reynolds numbers $Re = 1000, 3200$ and 7500, using grids of 101×101, 121×121, and 151×151, respectively.
Figure 3.9: Lid-driven cavity flow: comparison of profiles of vertical and horizontal velocities along the horizontal and vertical center lines of the cavity for different Reynolds numbers $Re = 1000, 3200 \text{ and } 7500$, using grids of $101 \times 101, 121 \times 121, \text{ and } 151 \times 151$, respectively.
3.7 Numerical results and discussion

3.7.4 Example 4: Flow past a circular cylinder

The steady flow past a circular cylinder at low Re numbers are considered in this section, where $Re = U_0 D / \nu$, U_0 is the far-field inlet velocity taken to be 1, D the diameter of the cylinder taken to be 1, ν the kinematic viscosity. The top, bottom, inlet and outlet boundaries are positioned at a distance of $20D, 20D, 10D$ and $30D$ away from the cylinder, respectively, as shown in Figure 3.10. These distances are large enough to assume that the far-field flow behaves as a potential flow (Kim et al., 2007) and the far-field stream function ψ_{far} can be defined by

$$\psi_{far} = U_0 y \left(1 - \frac{D^2}{4(x^2 + y^2)} \right). \quad (3.90)$$

Figure 3.10: Flow past a circular cylinder: problem geometry and boundary conditions.

The boundary conditions for stream function and vorticity are given by

$$\psi = \psi_{far}, \quad \omega = 0, \quad \text{on } \Gamma_1, \Gamma_2, \Gamma_3, \quad \text{(3.91)}$$

$$\frac{\partial \psi}{\partial x} = 0, \quad \frac{\partial \omega}{\partial x} = 0, \quad \text{on } \Gamma_4, \quad \text{(3.92)}$$

$$\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0, \quad \text{on } \Gamma_w. \quad \text{(3.93)}$$
where \(n \) is the direction normal to the cylinder surface as shown in Figure 3.11.

The values of the vorticity on the circular boundary \(\Gamma_w \) can be computed as

\[
\omega_w = - \left(\frac{\partial^2 \psi_w}{\partial x^2} + \frac{\partial^2 \psi_w}{\partial y^2} \right)
\]

(3.94)

where the subscript \(w \) is used to denote quantities on the circular boundary. A formula of Le-Cao et al. (2009) is employed here to derive the vorticity boundary conditions at boundary points on \(x \)- and \(y \)-grid lines as follows.

\[
\omega_w^{(x)} = - \left[1 + \left(\frac{t_x}{t_y} \right)^2 \right] \frac{\partial^2 \psi_w}{\partial x^2} - q_y,
\]

(3.95)

\[
\omega_w^{(y)} = - \left[1 + \left(\frac{t_y}{t_x} \right)^2 \right] \frac{\partial^2 \psi_w}{\partial y^2} - q_x,
\]

(3.96)

where \(q_x \) and \(q_y \) are known quantities defined by

\[
q_x = - \frac{t_y}{t_x} \frac{\partial^2 \psi_w}{\partial y \partial s} + \frac{1}{t_x \partial x \partial s},
\]

(3.97)

\[
q_y = - \frac{t_x}{t_y} \frac{\partial^2 \psi_w}{\partial x \partial s} + \frac{1}{t_y \partial y \partial s},
\]

(3.98)

in which \(t_x = \partial x / \partial s, t_y = \partial y / \partial s \) and \(s \) is the direction tangential to the cylinder surface (Figure 3.11).
3.7 Numerical results and discussion

Calculation of drag and pressure coefficients

For viscous flow, the forces acting on the body come from two sources including pressure and friction. For the case of flow past a circular cylinder, the drag F_D and its coefficient C_D can be defined by

$$F_D = R \int_0^{2\pi} \left(\mu R \frac{\partial \omega}{\partial n} - \mu \omega \right) \sin \theta d\theta,$$

(3.99)

$$C_D = \frac{F_D}{\rho U_0^2 R},$$

(3.100)

where R is the radius of the cylinder; ρ fluid density; and μ the dynamic viscosity. The dimensionless pressure coefficient is given by

$$C_p(\theta) = \frac{p(\theta) - p_0}{1/2 \rho U_0^2},$$

(3.101)

where p_0 is the far-field inlet pressure; and $p(\theta)$ the pressure on the cylinder surface at angle θ, evaluated as (Muralidhar and Sundararajan, 1995)

$$p(\theta) = (p_0 + 1/2 \rho U_0^2) - \int_{R}^{d_0} \left(\frac{\mu \partial \omega}{r \partial \theta} \right) \bigg|_{\theta=0} \, dr - R \int_{0}^{\theta} \left(\frac{\partial \omega}{\partial n} \right) \bigg|_{r=R} \, d\theta,$$

(3.102)

in which d_0 is the distance from the cylinder center to the inlet boundary.

Non-overlapping domain decomposition technique

As described in Section 3.5, the relevant governing equations are of Poisson type. Thus, consider the following Poisson problem in a domain Ω with Dirichlet
boundary condition on the boundary \(\partial \Omega \)

\[
\Delta u = f(x, y) \quad \text{in } \Omega \\
u = b \quad \text{on } \partial \Omega
\]

(3.103) (3.104)

It is noted that the Neumann boundary conditions (3.92) can be imposed directly through the conversion process (3.26)-(3.29). Therefore, we just need to consider the Poisson problem with Dirichlet boundary condition here.

Without loss of generality, the domain of interest \(\Omega \) is partitioned into just two non-overlapping subdomains \(\Omega_1 \) and \(\Omega_2 \) as shown in Figure 3.12. The Poisson problem can be reformulated in the equivalent multi-domain form as follows (Quarteroni and Valli, 1999).

\[
\Delta u^{[1]} = f^{[1]} \quad \text{in } \Omega_1 \quad \text{(3.105)}
\]

\[
u = b^{[1]} \quad \text{on } \partial \Omega_1 \cap \partial \Omega \quad \text{(3.106)}
\]

\[
\Delta u^{[2]} = f^{[2]} \quad \text{in } \Omega_2 \quad \text{(3.107)}
\]

\[
u = b^{[2]} \quad \text{on } \partial \Omega_2 \cap \partial \Omega \quad \text{(3.108)}
\]

\[
u^{[1]} = u^{[2]} \quad \text{on } \Gamma \quad \text{(3.109)}
\]

\[
\frac{\partial u^{[1]}}{\partial n} = \frac{\partial u^{[2]}}{\partial n} \quad \text{on } \Gamma \quad \text{(3.110)}
\]

where \(\Gamma \) is the interface between \(\Omega_1 \) and \(\Omega_2 \); \(\partial \Omega_1 \) and \(\partial \Omega_1 \) the boundaries of the subdomains \(\Omega_1 \) and \(\Omega_2 \), respectively; and the superscript \([\cdot]\) denotes a subdomain. Equations (3.109) and (3.110) are the transmission conditions for \(u^{[1]} \) and \(u^{[2]} \) on the interface \(\Gamma \). By solving the system of Equations (3.105)-(3.110), one can obtain the interface values \(u_\Gamma \), and the subdomain solutions \(u^{[1]} \) and \(u^{[2]} \).

We now describe an algorithm for solving the system of Equations (3.105)-(3.110) as follows. Let the subscripts \(ip, bp \) and \(fb \) represent the location indices
3.7 Numerical results and discussion

Figure 3.12: Non-overlapping partition of the domain Ω into two subdomains Ω_1 and Ω_2.

of interior points, known boundary points and interface points over a subdomain, respectively; N, N_{ip}, N_{bp} and N_{fp} are the total number of points, the number of interior points, known boundary points and interface points of a subdomain, respectively.

System of Equations (3.105)-(3.110) are written in matrix form as follows.

$$
\tilde{E}^{[1]} \tilde{u}^{[1]} = RHS^{[1]},
$$

$$
\tilde{u}^{[1]}_{(bp)} = u^{[1]}_{b},
$$

$$
\tilde{E}^{[2]} \tilde{u}^{[2]} = RHS^{[2]},
$$

$$
\tilde{u}^{[2]}_{(bp)} = u^{[2]}_{b},
$$

$$
\tilde{u}^{[1]}_{(fp)} = \tilde{u}^{[2]}_{(fp)} = u_{\Gamma},
$$

$$
D^{[1]} \tilde{u}^{[1]} = D^{[2]} \tilde{u}^{[2]},
$$

where $\tilde{E}^{[1]}$ and $\tilde{E}^{[2]}$ are the known matrices of dimension $(N_{ip}^{[1]} \times N^{[1]})$ and $(N_{ip}^{[2]} \times N^{[2]})$, respectively; $\tilde{u}^{[1]}$ and $\tilde{u}^{[2]}$ field variable vectors of length $N^{[1]}$ and $N^{[2]}$, respectively; $RHS^{[1]}$, $RHS^{[2]}$, $u^{[1]}_{b}$ and $u^{[2]}_{b}$ the known vectors of length $N_{ip}^{[1]}$, $N_{ip}^{[2]}$, $N_{ip}^{[1]}$ and $N_{ip}^{[2]}$, respectively; u_{Γ} unknown vector of length N_{fp}; and $D^{[1]}$ and $D^{[2]}$ the known matrices of dimension $(N_{fp} \times N^{[1]})$ and $(N_{fp} \times N^{[2]})$, respectively.
From (3.111), (3.112) and (3.115), one is able to obtain the following expression

\[
\begin{bmatrix}
\tilde{E}^{[1]}_{(:,ip)} & \tilde{E}^{[1]}_{(:,bp)} & \tilde{E}^{[1]}_{(:,fp)} \\
\end{bmatrix}
\begin{pmatrix}
\tilde{u}^{[1]}_{(ip)} \\
\tilde{u}^{[1]}_{(bp)} \\
\tilde{u}^{[1]}_{(fp)} \\
\end{pmatrix} = \text{RHS}^{[1]}
\] (3.117)

or

\[
\tilde{u}^{[1]}_{(ip)} = A^{[1]} + B^{[1]} u_{\Gamma}
\] (3.118)

where

\[
A^{[1]} = \left(\tilde{E}^{[1]}_{(:,ip)} \right)^{-1} \left(\text{RHS}^{[1]} - \tilde{E}^{[1]}_{(:,bp)} \tilde{u}^{[1]}_{(bp)} \right)
\] (3.119)

\[
B^{[1]} = - \left(\tilde{E}^{[1]}_{(:,ip)} \right)^{-1} \tilde{E}^{[1]}_{(:,fp)}
\] (3.120)

Similarly, from (3.113), (3.114) and (3.115), the interior values of the subdomain Ω_2 is given by

\[
\tilde{u}^{[2]}_{(ip)} = A^{[2]} + B^{[2]} u_{\Gamma}
\] (3.121)

where

\[
A^{[2]} = \left(\tilde{E}^{[2]}_{(:,ip)} \right)^{-1} \left(\text{RHS}^{[2]} - \tilde{E}^{[2]}_{(:,bp)} \tilde{u}^{[2]}_{(bp)} \right)
\] (3.122)

\[
B^{[2]} = - \left(\tilde{E}^{[2]}_{(:,ip)} \right)^{-1} \tilde{E}^{[2]}_{(:,fp)}
\] (3.123)

Equation (3.116) can be expressed as

\[
\begin{bmatrix}
D^{[1]}_{(:,ip)} & D^{[1]}_{(:,bp)} & D^{[1]}_{(:,fp)} \\
\end{bmatrix}
\begin{pmatrix}
\tilde{u}^{[1]}_{(ip)} \\
\tilde{u}^{[1]}_{(bp)} \\
\tilde{u}^{[1]}_{(fp)} \\
\end{pmatrix} = \begin{bmatrix}
\tilde{E}^{[2]}_{(:,ip)} & \tilde{E}^{[2]}_{(:,bp)} & \tilde{E}^{[2]}_{(:,fp)} \\
\end{bmatrix}
\begin{pmatrix}
\tilde{u}^{[2]}_{(ip)} \\
\tilde{u}^{[2]}_{(bp)} \\
\tilde{u}^{[2]}_{(fp)} \\
\end{pmatrix}
\] (3.124)
By substituting Equations (3.118) and (3.121) into (3.124), the interface values \(u_\Gamma \) are determined as

\[
 u_\Gamma = \frac{-D_{(,,ip)}^{[1]} A^{[1]} - D_{(,,ip)}^{[1]} u_b^{[1]} + D_{(,,ip)}^{[2]} A^{[2]} + D_{(,,bp)}^{[2]} u_b^{[2]}}{D_{(,,ip)}^{[2]} B^{[1]} + D_{(,,ip)}^{[1]} - D_{(,,ip)}^{[2]} B^{[2]} - D_{(,,fp)}^{[2]}}. \tag{3.125}
\]

By substituting (3.125) into (3.118) and (3.121), one can obtain the subdomain solutions \(\tilde{u}_{(ip)}^{[1]} \) and \(\tilde{u}_{(ip)}^{[2]} \).

The combination of LMLS-1D-IRBFN and a domain decomposition technique is developed to handle this large scale problem using a PC with 2.99 GHz CPU and 3.25 GB of RAM. The computational domain is discretised using Cartesian grids as shown in Figure 3.13. The grid convergence study of vorticity distribution on the cylinder surface for \(Re \) number of 40 is presented in Figure 3.14. It can be seen that the current simulations converge with increasing grid densities. The results obtained for the grids of 151 \(\times \) 151 and 167 \(\times \) 167 are in good agreement with those of Kim et al. (2007) and Dennis and Chang (1970). Therefore, the grid of 151 \(\times \) 151 is then used to investigate the flow field with the other values of \(Re \) numbers (i.e. 5, 10 and 20). It is noted that when the flow reaches the steady state, a pair of vortices and the separated region behind the cylinder are formed. The length of the wake is measured from the rear of the cylinder to the end of the separated region, while the angle of separation is defined at the point where the vorticity vanishes. Table 3.9 presents the length of the wake behind the cylinder \((L_{sep}) \), the separation angle \((\theta_{sep}) \) and the drag coefficient \((C_D) \) for \(Re \) numbers of 5, 10, 20 and 40. The comparisons of vorticity and pressure coefficient distribution on the cylinder surface in the case of \(Re \) numbers of 5, 10, 20 and 40 are given in Figures 3.15 and 3.16, respectively. It can be seen that the present numerical results are in good agreement with other published results. The contours of stream function and vorticity of the flow field around the cylinder are shown in Figure 3.17.
3.7 Numerical results and discussion

Table 3.9: Flow past a circular cylinder: comparison of the wake length (L_{sep}), the separation angle (θ_{sep}) and the drag coefficient (C_D) for $Re = 5, 10, 20$ and 40, using a grid of 151×151.

<table>
<thead>
<tr>
<th>Re</th>
<th>Source</th>
<th>L_{sep}</th>
<th>θ_{sep}</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Dennis and Chang (1970)</td>
<td>-</td>
<td>-</td>
<td>4.116</td>
</tr>
<tr>
<td></td>
<td>Kim et al. (2007)</td>
<td>-</td>
<td>-</td>
<td>4.282</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>-</td>
<td>-</td>
<td>4.108</td>
</tr>
<tr>
<td>10</td>
<td>Dennis and Chang (1970)</td>
<td>0.265</td>
<td>29.6</td>
<td>2.846</td>
</tr>
<tr>
<td></td>
<td>Ding et al. (2004)</td>
<td>0.252</td>
<td>30.0</td>
<td>3.070</td>
</tr>
<tr>
<td></td>
<td>Kim et al. (2007)</td>
<td>0.281</td>
<td>29.5</td>
<td>2.920</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>0.27</td>
<td>30.1</td>
<td>2.829</td>
</tr>
<tr>
<td>20</td>
<td>Dennis and Chang (1970)</td>
<td>0.94</td>
<td>43.7</td>
<td>2.045</td>
</tr>
<tr>
<td></td>
<td>Ding et al. (2004)</td>
<td>0.93</td>
<td>44.1</td>
<td>2.180</td>
</tr>
<tr>
<td></td>
<td>Kim et al. (2007)</td>
<td>0.91</td>
<td>43.7</td>
<td>2.017</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>0.92</td>
<td>43.6</td>
<td>2.010</td>
</tr>
<tr>
<td>40</td>
<td>Dennis and Chang (1970)</td>
<td>2.345</td>
<td>53.8</td>
<td>1.522</td>
</tr>
<tr>
<td></td>
<td>Ding et al. (2004)</td>
<td>2.20</td>
<td>53.5</td>
<td>1.713</td>
</tr>
<tr>
<td></td>
<td>Kim et al. (2007)</td>
<td>2.187</td>
<td>55.1</td>
<td>1.640</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>2.31</td>
<td>53.7</td>
<td>1.542</td>
</tr>
</tbody>
</table>
3.7 Numerical results and discussion

Figure 3.13: Flow past a circular cylinder: grid configuration.

Figure 3.14: Flow past a circular cylinder: grid convergence study, \(\text{Re} = 40 \).
3.7 Numerical results and discussion

Figure 3.15: Flow past a circular cylinder: comparison of vorticity on the circular cylinder in the cases of $Re = 5, 10, 20$ and 40, using a grid of 151×151.

Figure 3.16: Flow past a circular cylinder: comparison of pressure coefficient on the circular cylinder in the cases of $Re = 5, 10, 20$ and 40, using a grid of 151×151.

Figure 3.17: Flow past a circular cylinder: contours of stream function (left) and vorticity (right) for the cases of $Re = 5, 10, 20$ and 40, from top to bottom, using a grid of 151×151.
3.8 Concluding remarks

A local MLS-1D-IRBFN method is proposed for solving incompressible viscous flow problems in terms of stream function and vorticity. The present approach is based on the PU concept and incorporates the MLS and 1D-IRBFN methods. The LMLS-1D-IRBFN approach offers the same order of accuracy as the 1D-IRBFN method, while the system matrix is more sparse than that of the 1D-IRBFN, which helps reduce the computational cost significantly as discussed earlier. The LMLS-1D-IRBFN shape function possesses the Kronecker-δ property which allows an exact imposition of the essential boundary condition. Cartesian grids are used to discretise both rectangular and irregular problem domains. The numerical results for the lid-driven cavity flows at high Re numbers showed that the calculation of convection terms using the 1D-IRBFN technique are more accurate than the one using the LMLS-1D-IRBFN technique. The combination of the LMLS-1D-IRBFN method and a domain decomposition technique is successfully developed for solving a larger problem. The obtained numerical results for both cases of lid-driven cavity flow and flow past a circular cylinder are in good agreement with other published results available in the literature. The present method can be used to handle problems with irregular domains, while the standard finite different method cannot be applied directly at the grid points near the boundary of irregular domains. Owing to the use of integrated RBFN for local approximation, the present method appears to be more accurate than the FDM with central-difference scheme. Owing to the use of a fixed Cartesian grid, the present method is expected to be more efficient than the conventional FDM, FVM and FEM when solving problems with moving boundary.
Chapter 4

Local MLS-1D-IRBFN method for natural convection in multiply-connected domains

The local moving least square - one dimensional integrated radial basis function network (LMLS-1D-IRBFN) method has been successfully developed for solving problems of steady incompressible viscous flows in Chapter 3. In the present chapter, the LMLS-1D-IRBFN method is further developed for multiply-connected domains and applied to simulate natural convection flows in concentric and eccentric annuli in terms of stream function, vorticity and temperature. Stream function value on the inner boundary is unknown and determined by using the single-valued pressure condition (Lewis, 1979). The method is first verified by the solution of the two-dimensional Poisson equation in a square domain with a circular hole, then applied to solve natural convection flow problems.
4.1 Introduction

Natural convection has been investigated both experimentally and numerically by many researchers for its wide applications, including nuclear reactor designs, solar energy systems, cooling of electronic equipments and thermal storage systems. Banerjee et al. (2008) conducted a study of heat transfer in a square enclosure with two discrete heat sources mounted on its bottom wall using finite volume method (FVM). Their work is useful in the design of efficient heat-removal systems in electronics and MEMS applications. Jubran et al. (2004) simulated convective layers on solar pond walls using three-dimensional FVM for solving conservation equations for mass, chemical species, momentum and energy. They investigated the effects of wall tilt angle and salt concentration on the characteristics of the convective layers. Costa and Raimundo (2010) numerically studied a mixed convection in a heated square enclosure with a rotating cylinder within it. They observed that the size of the inner cylinder strongly affects the resulting flow and heat transfer process. Their simulation can be used to model real situations where a rotating shaft is used to control the performance of natural convection in an enclosure.

Kuehn and Goldstein (1976) conducted experimental and theoretical studies to investigate the natural convection within an annulus between horizontal concentric cylinders. Their experimental results showed that the flow is steady for small Rayleigh numbers. Their numerical results were in good agreement with their experimental data. Moukalled and Acharya (1996) studied the natural convection in a annulus between concentric horizontal circular and square cylinders using a control volume-based method. Shu and Zhu (2002) employed the differential quadrature (DQ) method to simulate the natural convection in a concentric annulus between a cold outer square cylinder and a heated inner circular cylinder. The DQ method can yield very accurate numerical results owing to its global approximation. However, the irregular physical domain must be transformed into a regular computational domain, and the governing equations
as well as the boundary conditions are also transformed into relevant forms in the computational space. Šarler and Perko (2004) presented a radial basis function collocation method for solving natural convection problems in porous media in terms of primitive variables. Recently, Kim et al. (2008) employed an immersed boundary method (IBM) based on FVM with non-uniform Cartesian grid distribution for the simulation of natural convection between an inner circular cylinder and an outer square enclosure.

When dealing with incompressible viscous flows in multiply-connected domains using stream function-vorticity formulation, the stream function value on the inner boundaries are unknown and can be determined through a single-valued pressure condition (Lewis, 1979). Tezduyar et al. (1988) proposed a streamline-upwind/Petrov-Galerkin finite element procedure for a computation of two-dimensional fluid flow involving multiply-connected domains based on the vorticity-stream function formulation. The stream function values at the internal boundaries were determined through additional equations obtained by integrating the equation of motion along those boundaries. Shu et al. (2001) applied the DQ method to the natural convective transfer in an eccentric annulus between a circular inner cylinder and a square outer cylinder. In their work, an explicit formulation of the stream function value on the inner cylinder wall was derived from the single-valued pressure condition.

In the past decades, meshfree methods have become a very interesting research topic as they might have certain advantages over conventional element-based methods. Some of their appealing properties are (i) a significant reduction in discretisation complexity and (ii) suitability for solving problems with moving boundaries and complicated geometry. However, global meshfree methods are not suitable for simulating large-scale problems because they produce very dense system matrices, which leads to the ill-conditioning problem, large storage requirement and a long computational time (Kansa, 1990b; Zerroukat et al., 2000; Šarler and Perko, 2004). In order to overcome this disadvantage, local meshfree
methods have been proposed. Shu et al. (2003) presented a local RBF-based
differential quadrature method (local RBF-DQ) for a simulation of natural con-
vection in a square cavity. In their study, three layers of orthogonal grid near
and including the boundary were generated for the purpose of imposing the
Neumann condition for temperature and vorticity on the wall. The derivatives
of the field variables in the boundary conditions were then discretised by the
conventional one-sided second order finite difference scheme. Ding et al. (2005)
employed the local RBF-DQ method for simulation of natural convection in
a horizontal eccentric annulus. In their work, the effects of eccentricity and
angular position on the flow and thermal fields for medium aspect ratios were
studied. The local RBF-DQ method was also used for solving incompressible
flow problems including the driven-cavity flow, flow past one isolated cylinder
and flow around two staggered circular cylinders (Shu et al., 2005). Šarler
and Vertnik (2006) proposed an explicit local radial basis function collocation
method for diffusion problems. The method appeared efficient, because it does
not deal with a large system of equations like the original Kansa method (Kansa,
1990b). The method was then extended to solve many other problems such as
convection-diffusion problems with phase change (Vertnik and Šarler, 2006), a
solution of conjugate heat transfer (Divo and Kassab, 2007), and a solution of
incompressible turbulent flow (Vertnik and Šarler, 2009). Recently, Yao et al.
(2011) presented a comparison of three explicit local meshless methods includ-
ing a local method of approximate particular solutions (LMAPS), a local di-
rect radial basis function collocation method (LDRBFCM), and a local indirect
radial basis function collocation method (LIRBFNCM). Three methods were
applied to a simple diffusion equation with Dirichlet jump boundary condition
based on both uniform and non-uniform node distributions. Their numerical
results showed that all methods have high accuracy and improvement of the
accuracies with increasing node density and decreasing time step. For random
node arrangement, the LMAPS and the LDRBFCM are more stable than the
LIDRBFCM. Some other meshfree methods based on local approximations in-
clude meshless local Petrov Galerkin method (MLPG) (Atluri and Zhu, 1998), a
point interpolation meshless method based on combining radial and polynomial basis function by Wang and Liu (2002), local multiquadric (LMQ) and local inverse multiquadric (LIMQ) approximation methods by Lee et al. (2003), a moving IRBFN-based Galerkin meshless method proposed by Le et al. (2010).

A different approach for solving PDEs is the so-called Cartesian grid method where the governing equations are discretised by a Cartesian grid which does not conform to the immersed boundaries. This significantly reduces the grid generation cost and has a great potential over the conventional body-fitted methods when solving problems with moving boundaries and complicated geometry. Ye et al. (1999) developed a finite-volume based Cartesian grid method for simulating two-dimensional unsteady, viscous, incompressible flows with complex immersed boundaries. In their method, the immersed boundary is represented by a series of piecewise linear segments. Based on these segments, the control volume near the immersed boundary is reformed into a body-fitted trapezoidal shape. Russell and Wang (2003) presented a Cartesian grid method for solving 2D incompressible viscous flows around multiple moving objects based on stream function-vorticity formulation.

As an alternative to the conventional differentiated radial basis function network (DRBFN) method (Kansa, 1990b), Mai-Duy and Tran-Cong (2001a) proposed the use of integration to construct the RBFN expressions (the IRBFN method) for the approximation of a function and its derivatives and for the solution of PDEs. The numerical results showed that the IRBFN method is more accurate than the DRBFN (Mai-Duy and Tran-Cong, 2001a,b). A one-dimensional integrated radial basis function network (1D-IRBFN) collocation method for the solution of second- and fourth-order PDEs was presented by Mai-Duy and Tanner (2007). Along grid lines, 1D-IRBFN are constructed to satisfy the governing differential equations with boundary conditions in an exact manner. In the 1D-IRBFN method, the Cartesian grids were used to discretise both rectangular and non-rectangular problem domains. The 1D-IRBFN method is much more
efficient than the original IRBFN method reported in Mai-Duy and Tran-Cong (2001a). Le-Cao et al. (2011) employed the 1D-IRBFN method to simulate unsymmetrical flows of a Newtonian fluid in multiply-connected domains using the stream-function and temperature formulation. Ngo-Cong et al. (2011) extended this method to investigate free vibration of composite laminated plates based on first-order shear deformation theory (Chapter 2). Ngo-Cong et al. (2012) proposed a local moving least square - one dimensional integrated radial basis function network method (LMLS-1D-IRBFN) for simulating 2-D steady incompressible viscous flows in terms of stream function and vorticity (Chapter 3). The method is based on the partition of unity framework to incorporate the moving least square and 1D-IRBFN techniques in an approach that produces a very sparse system matrix and offers as a high level of accuracy as that of the 1D-IRBFN. Moreover, LMLS-1D-IRBFN shape function possesses the Kronecker-δ property which helps impose the essential boundary condition in an exact manner. In this chapter, the LMLS-1D-IRBFN is applied to the solution of the stream-function, vorticity and temperature formulation of the natural convection in concentric and eccentric annuli. For the concentric case, the stream function values at the inner and outer boundaries are taken to be zero. For the eccentric case, the stream function value at the outer boundary is taken to be zero, while the stream function at the inner cylinder is unknown and calculated based on the single-valued pressure condition.

The chapter is organised as follows. The LMLS-1D-IRBFN method is presented in Section 4.2. The governing equations for natural convection flows are given in Section 4.3. Several numerical examples are investigated using the proposed method in Section 4.4. Section 4.5 concludes the chapter.
4.2 Local moving least square - one dimensional integrated radial basis function network technique

A schematic outline of the LMLS-1D-IRBFN method is depicted in Figure 4.1. The proposed method with 3-node support domains \((n = 3)\) and 5-node local 1D-IRBF networks \((n_s = 5)\) is presented here. On an \(x\)-grid line \([l]\), a global interpolant for the field variable at a grid point \(x_i\) is sought in the form

\[
u(x_i) = \sum_{j=1}^{n} \tilde{\phi}_j(x_i) u^{[j]}(x_i), \tag{4.1}\]

where \(\{\tilde{\phi}_j\}_{j=1}^{n}\) is a set of the partition of unity functions constructed using MLS approximants (Liu, 2003); \(u^{[j]}(x_i)\) the nodal function value obtained from a local interpolant represented by a 1D-IRBF network \([j]\); \(n\) the number of nodes in the support domain of \(x_i\). In (4.1), MLS approximants are presently based on linear polynomials, which are defined in terms of 1 and \(x\). It is noted that the MLS shape functions possess a so-called partition of unity properties as follows.

\[
\sum_{j=1}^{n} \tilde{\phi}_j(x) = 1. \tag{4.2}\]

Relevant derivatives of \(u\) at \(x_i\) can be obtained by differentiating (4.1)

\[
\frac{\partial u(x_i)}{\partial x} = \sum_{j=1}^{n} \left(\frac{\partial \tilde{\phi}_j(x_i)}{\partial x} u^{[j]}(x_i) + \tilde{\phi}_j(x_i) \frac{\partial u^{[j]}(x_i)}{\partial x} \right), \tag{4.3}\]

\[
\frac{\partial^2 u(x_i)}{\partial x^2} = \sum_{j=1}^{n} \left(\frac{\partial^2 \tilde{\phi}_j(x_i)}{\partial x^2} u^{[j]}(x_i) + 2 \frac{\partial \tilde{\phi}_j(x_i)}{\partial x} \frac{\partial u^{[j]}(x_i)}{\partial x} + \tilde{\phi}_j(x_i) \frac{\partial^2 u^{[j]}(x_i)}{\partial x^2} \right), \tag{4.4}\]
where the values \(u_j(x_i), \partial u_j(x_i)/\partial x \) and \(\partial^2 u_j(x_i)/\partial x^2 \) are calculated from 1D-IRBFN networks with \(n_s \) nodes.

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega,
\]

\[
\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} - \frac{1}{\text{Pr}} \frac{\partial \omega}{\partial t} = -Ra \frac{\partial T}{\partial x} + \frac{1}{\text{Pr}} \left(\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} \right),
\]

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} - \frac{\partial T}{\partial t} = \frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y}.
\]

Figure 4.1: LMLS-1D-IRBFN scheme, \(\square \) a typical \([j]\) node.

Full details of the LMLS-1D-IRBFN method can be found in Chapter 3.

4.3 Governing equations for natural convection flows

Fluid properties are assumed to be constant except that the density changes with temperature, which is represented by using the Boussinesq approximation. The dimensionless governing equations, expressed in terms of stream function \(\psi \), vorticity \(\omega \) and temperature \(T \), are written as

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega,
\]

\[
\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} - \frac{1}{\text{Pr}} \frac{\partial \omega}{\partial t} = -Ra \frac{\partial T}{\partial x} + \frac{1}{\text{Pr}} \left(\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} \right),
\]

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} - \frac{\partial T}{\partial t} = \frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y}.
\]
where Pr is the Prandtl number defined as $Pr = \mu C_p/k$, Ra the Rayleigh number defined as $Ra = (C_p \rho_0 g \beta_0 L^3 \Delta T) / (k \nu)$, μ the viscosity, C_p the specific heat at constant pressure, k thermal conductivity, ρ_0 the reference density, g the gravitational acceleration, β_0 the thermal expansion coefficient, L the side length of the square outer cylinder, ΔT the temperature difference between inner and outer cylinders, ν the kinematic viscosity, t the time, and $(x, y)^T$ the position vector. The x and y components of the velocity vector can be defined in terms of the stream function as

$$u = \frac{\partial \psi}{\partial y}, \quad (4.8)$$

$$v = -\frac{\partial \psi}{\partial x}. \quad (4.9)$$

The computational boundary conditions for vorticity can be computed as

$$\omega_w = -\left(\frac{\partial^2 \psi_w}{\partial x^2} + \frac{\partial^2 \psi_w}{\partial y^2}\right) \quad (4.10)$$

where the subscript w is used to denote quantities on the boundary. For curved boundaries, a formula reported in (Le-Cao et al., 2009) is employed here to derive the vorticity boundary conditions at boundary points on x- and y-grid lines as follows.

$$\omega_w^{(x)} = -\left[1 + \left(\frac{t_x}{t_y}\right)^2\right] \frac{\partial^2 \psi_w}{\partial x^2} - q_y, \quad (4.11)$$

$$\omega_w^{(y)} = -\left[1 + \left(\frac{t_y}{t_x}\right)^2\right] \frac{\partial^2 \psi_w}{\partial y^2} - q_x, \quad (4.12)$$

where q_x and q_y are known quantities defined by

$$q_x = -\frac{t_y}{t_x} \frac{\partial^2 \psi_w}{\partial y\partial s} + \frac{1}{t_x} \frac{\partial^2 \psi_w}{\partial x\partial s}, \quad (4.13)$$

$$q_y = -\frac{t_x}{t_y} \frac{\partial^2 \psi_w}{\partial x\partial s} + \frac{1}{t_y} \frac{\partial^2 \psi_w}{\partial y\partial s}, \quad (4.14)$$
4.4 Numerical results and discussion

in which \(t_x = \frac{\partial x}{\partial s}, t_y = \frac{\partial y}{\partial s} \) and \(s \) is the direction tangential to the curved surface.

Boundary conditions for stream function and temperature are specified in the following examples.

4.4 Numerical results and discussion

The present method is applied to obtain the solution of two-dimensional Poisson equation in a square domain with a circular hole, and the natural convection in concentric and eccentric annuli. The problem domains are discretised using Cartesian grids. By using the LMLS-1D-IRBFN method to discretise the left hand side (LHS) of governing equations and the LU decomposition technique to solve the resultant sparse system of simultaneous equations, the computational cost and data storage requirements are reduced. In the analyses of natural convection flows, the diffusion terms are discretised using the LMLS-1D-IRBFN method, whereas the nonlinear convection terms are explicitly calculated using the 1D-IRBFN method. As shown in Chapter 3 (Ngo-Cong et al., 2012), this approach yields more accurate solutions than the one using the LMLS-1D-IRBFN to discretise both diffusion and convection terms. In the following Examples 2-4, computational boundary conditions for vorticity are determined by Equations (4.10)-(4.14).
4.4.1 Example 1: Two-dimensional Poisson equation in a square domain with a circular hole

The present method is first verified through the solution of the following 2D Poisson equation

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,
\]

defined on a square domain with a square hole as shown in Figure 4.2 and subject to Dirichlet boundary conditions. The problem has the following exact solution

\[
u_E = \left(\frac{1}{\sinh(\pi)}\right) \sin(\pi x) \sinh(\pi y),
\]

from which the boundary values of \(u\) can be derived.

It is noted that the accuracy of RBF-based solution depends on the RBF width, small or large values of the RBF width make the response of neuron too peaked or flat, respectively (Haykin, 1999). Figure 4.3 presents the \(\beta\)-adaptivity study.
of relative error norm \((N_e)\) and condition number \((\text{cond})\) in a range of \(4 \leq \beta \leq 10\) by using the LMLS-1D-IRBFN method. It appears that the accuracy increases with increasing value of \(\beta\) for coarse grids. However, the solution becomes unstable at large values of \(\beta\) for dense grids. Therefore, proper values of \(\beta\) are required to obtain good numerical solutions. The condition numbers of the system matrix remains unchanged for different values of \(\beta\) and are slightly different from those of the 1D-IRBFN method.

Table 4.1 describes the grid convergence study of relative error norms \((N_e)\), condition number \((\text{cond})\) and percentage of nonzero elements of the system matrix \((\epsilon)\) of the present method with \(\beta = 6\) in comparison with those of 1D-IRBFN method. Both methods yield highly accurate results and converge well with increasing node density. It is observed that the convergence order of LMLS-1D-IRBFN (error norm of \(O(h^{1.99})\)) is smaller than that of 1D-IRBFN (error norm of \(O(h^{3.10})\)), however, the accuracy of former is better than that of the latter at a given grid size. In addition, the present method is more efficient than the 1D-IRBFN method in terms of memory requirements (e.g., 12.6 times for a grid of \(105 \times 105\)).

Table 4.1: Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: comparison of relative error norm \((N_e)\), condition number \((\text{cond})\) and percentage of nonzero elements of the system matrix \((\epsilon)\), using \(\beta = 1\) for 1D-IRBFN and \(\beta = 6\) for the present method (LMLS-1D-IRBFN).

<table>
<thead>
<tr>
<th>Grid</th>
<th>(N_e)</th>
<th>(\text{cond})</th>
<th>(\epsilon(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1D-IRBFN</td>
<td>Present</td>
<td>1D-IRBFN</td>
</tr>
<tr>
<td>25 (\times) 25</td>
<td>3.38E-05</td>
<td>5.82E-06</td>
<td>3.31E+02</td>
</tr>
<tr>
<td>33 (\times) 33</td>
<td>1.34E-05</td>
<td>3.05E-06</td>
<td>3.56E+02</td>
</tr>
<tr>
<td>41 (\times) 41</td>
<td>6.65E-06</td>
<td>2.00E-06</td>
<td>5.96E+02</td>
</tr>
<tr>
<td>49 (\times) 49</td>
<td>3.87E-06</td>
<td>1.42E-06</td>
<td>9.00E+02</td>
</tr>
<tr>
<td>57 (\times) 57</td>
<td>2.38E-06</td>
<td>1.05E-06</td>
<td>1.66E+03</td>
</tr>
<tr>
<td>65 (\times) 65</td>
<td>1.58E-06</td>
<td>7.97E-07</td>
<td>2.28E+03</td>
</tr>
<tr>
<td>73 (\times) 73</td>
<td>1.09E-06</td>
<td>6.33E-07</td>
<td>2.99E+03</td>
</tr>
<tr>
<td>81 (\times) 81</td>
<td>7.89E-07</td>
<td>5.18E-07</td>
<td>4.06E+03</td>
</tr>
<tr>
<td>89 (\times) 89</td>
<td>5.90E-07</td>
<td>4.19E-07</td>
<td>4.05E+03</td>
</tr>
<tr>
<td>97 (\times) 97</td>
<td>4.48E-07</td>
<td>3.62E-07</td>
<td>4.50E+03</td>
</tr>
<tr>
<td>105 (\times) 105</td>
<td>3.53E-07</td>
<td>3.03E-07</td>
<td>6.02E+03</td>
</tr>
</tbody>
</table>
4.4 Numerical results and discussion

Figure 4.3: Poisson equation in a square domain with a circular hole subject to Dirichlet boundary conditions: β-adaptivity study for the present method (LMLS-1D-IRBFN).
4.4.2 Example 2: Concentric annulus between two circular cylinders

The present method is applied to the solution of natural convection in a concentric annulus between two circular cylinders. The problem geometry and boundary conditions are described in Figure 4.4. The parameter values used here are: \(Pr = 0.7, L = 1.0 \) and \(L/D_i = 0.8 \), where \(L \) is the annulus width, and \(D_i \) the inner cylinder diameter. The average equivalent conductivity is given by

\[
\bar{k}_{eq} = -\frac{\ln(D_o/D_i)}{2\pi} \oint \frac{\partial T}{\partial n} ds,
\]

where \(D_o \) is the diameters of the outer cylinder; and \(n \) the direction normal to the cylinder surfaces.

![Figure 4.4: Concentric annulus between two circular cylinders: problem geometry and boundary conditions. Angular positions are measured clockwise from the positive y-axis. Note that computational boundary conditions for vorticity are determined by Equations (4.10)-(4.14).](image)

Table 4.2 shows the grid convergence study of average equivalent conductivity on the outer and inner cylinders for Rayleigh numbers from \(10^2 \) to \(7 \times 10^4 \). Three levels of grid density including \(41 \times 41, 51 \times 51 \) and \(61 \times 61 \) are considered. The present numerical results are compared with the 1D-IRBFN, FDM and DQM results obtained by Le-Cao et al. (2009); Kuehn and Goldstein (1976); and Shu...
4.4 Numerical results and discussion

It can be seen that the present results converge to those reference values with increasing grid density.

Table 4.2: Concentric annulus between two circular cylinders: Grid convergence study of the average equivalent conductivity on the outer and inner cylinders, k_{eqo} and k_{eqi}, respectively, for different Rayleigh numbers.

<table>
<thead>
<tr>
<th>Ra</th>
<th>10^2</th>
<th>10^3</th>
<th>3×10^3</th>
<th>6×10^3</th>
<th>10^4</th>
<th>5×10^4</th>
<th>7×10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41×41</td>
<td>1.002</td>
<td>1.083</td>
<td>1.397</td>
<td>1.716</td>
<td>1.983</td>
<td>3.107</td>
<td>3.462</td>
</tr>
<tr>
<td>51×51</td>
<td>1.001</td>
<td>1.083</td>
<td>1.399</td>
<td>1.719</td>
<td>1.984</td>
<td>3.017</td>
<td>3.288</td>
</tr>
<tr>
<td>61×61</td>
<td>1.001</td>
<td>1.083</td>
<td>1.398</td>
<td>1.717</td>
<td>1.982</td>
<td>2.983</td>
<td>3.238</td>
</tr>
<tr>
<td>1D-IRBFNa</td>
<td>1.000</td>
<td>1.083</td>
<td>1.396</td>
<td>1.709</td>
<td>1.975</td>
<td>2.962</td>
<td>3.207</td>
</tr>
<tr>
<td>FDMb</td>
<td>1.000</td>
<td>1.081</td>
<td>1.404</td>
<td>1.736</td>
<td>2.010</td>
<td>3.024</td>
<td>3.308</td>
</tr>
<tr>
<td>DQMc</td>
<td>1.000</td>
<td>1.082</td>
<td>1.397</td>
<td>1.715</td>
<td>1.979</td>
<td>2.958</td>
<td>3.238</td>
</tr>
<tr>
<td>41×41</td>
<td>1.001</td>
<td>1.083</td>
<td>1.399</td>
<td>1.715</td>
<td>1.969</td>
<td>3.264</td>
<td>3.733</td>
</tr>
<tr>
<td>51×51</td>
<td>1.001</td>
<td>1.083</td>
<td>1.399</td>
<td>1.718</td>
<td>1.979</td>
<td>2.996</td>
<td>3.394</td>
</tr>
<tr>
<td>61×61</td>
<td>1.001</td>
<td>1.083</td>
<td>1.398</td>
<td>1.717</td>
<td>1.981</td>
<td>2.927</td>
<td>3.218</td>
</tr>
<tr>
<td>1D-IRBFNa</td>
<td>0.999</td>
<td>1.080</td>
<td>1.393</td>
<td>1.712</td>
<td>1.970</td>
<td>2.942</td>
<td>3.246</td>
</tr>
<tr>
<td>FDMb</td>
<td>1.002</td>
<td>1.084</td>
<td>1.402</td>
<td>1.735</td>
<td>2.005</td>
<td>2.973</td>
<td>3.226</td>
</tr>
<tr>
<td>DQMc</td>
<td>1.001</td>
<td>1.082</td>
<td>1.397</td>
<td>1.715</td>
<td>1.979</td>
<td>2.958</td>
<td>3.238</td>
</tr>
</tbody>
</table>

a (Le-Cao et al., 2009)
b (Kuehn and Goldstein, 1976)
c (Shu, 1999)

Figures 4.5 and 4.6 show the influence of Rayleigh number on the equivalent conductivities on the inner and outer the cylinders, respectively. The figures indicate that heat is being convected from the lower portion of the inner cylinder to the top of the outer cylinder.

Figures 4.7 and 4.8 present the contours of temperature and stream function of the flow in the annulus for Rayleigh numbers from 10^2 to 7×10^4. Those contours are symmetric with respect to the vertical center line. At low Rayleigh numbers (say $< 10^2$), the flow appears almost symmetric about the horizontal center line since convection is quite small. As the Rayleigh number increases, the center of rotation moves upwards and the temperature distribution become distorted, resulting in an increase in overall heat transfer. The highest local heat flux occurs at the stagnation point while the smallest local heat flux occurs at the separation point. For the inner cylinder, the stagnation point is at the bottom while the separation point is at the top. For the outer cylinder, the stagnation point is at the top while the separation point is at the bottom.
4.4 Numerical results and discussion

Figure 4.5: Concentric annulus between two circular cylinders: influence of Rayleigh number on local and average equivalent conductivities on the inner cylinders.

Figure 4.6: Concentric annulus between two circular cylinders: influence of Rayleigh number on local and average equivalent conductivities on the outer cylinders.
Figure 4.7: Concentric annulus between two circular cylinders: contours of temperature (left) and stream function (right) for different Rayleigh numbers $Ra = 10^2, 10^3, 3 \times 10^3$ and 6×10^3, from top to bottom, using a grid of 61×61. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
4.4 Numerical results and discussion

Figure 4.8: Concentric annulus between two circular cylinders: contours of temperature (left) and stream function (right) for different Rayleigh numbers $Ra = 10^4, 5 \times 10^4$ and 7×10^4, from top to bottom, using a grid of 61×61. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
4.4.3 Example 3: Concentric annulus between a square outer cylinder and a circular inner cylinder

This example is concerned with the natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder. The problem geometry and boundary conditions are described in Figure 4.9. The parameter values used here are: \(Pr = 0.71 \) and \(L/2R = 2.5 \), where \(L \) is the side length of the outer square, and \(R \) the radius of the inner cylinder. The average Nusselt number is defined by

\[
Nu = -\frac{1}{k} \int \frac{\partial T}{\partial n} ds, \tag{4.18}
\]

where \(k \) is the thermal conductivity.

Figure 4.9: Concentric annulus between a square outer cylinder and a circular inner cylinder: problem geometry and boundary conditions. Note that computational boundary conditions for vorticity are determined by Equations (4.10)-(4.14).

Table 4.3 presents the grid convergence study of the average Nusselt number on the inner and the outer cylinders for different Raleigh numbers. Moukalled and Acharya (1996) studied this problem by solving the governing elliptic conserva-
tion equations in a boundary-fitted coordinate system using a control volume-based procedure. The governing equations were solved for only one-half of the physical domain since the flow is symmetric about the vertical axis. In the present study, a whole of the physical domain is considered. Therefore, the average Nusselt numbers obtained are divided by 2 for the purposes of comparison. It can be seen that the present results converge to the 1D-IRBFN (Le-Cao et al., 2009) and FDM (Moukalled and Acharya, 1996) results with increasing grid density.

Table 4.3: Concentric annulus between a square outer cylinder and a circular inner cylinder: Grid convergence study of the average Nusselt number on the inner and outer cylinders, \(\overline{N_u_i} \) and \(\overline{N_u_o} \), respectively, for different Rayleigh numbers.

<table>
<thead>
<tr>
<th>Ra</th>
<th>(10^4)</th>
<th>(5 \times 10^4)</th>
<th>(10^5)</th>
<th>(5 \times 10^5)</th>
<th>(10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 \times 43</td>
<td>3.23</td>
<td>4.05</td>
<td>4.90</td>
<td>7.58</td>
<td>9.00</td>
</tr>
<tr>
<td>53 \times 53</td>
<td>3.23</td>
<td>4.05</td>
<td>4.91</td>
<td>7.56</td>
<td>8.94</td>
</tr>
<tr>
<td>63 \times 63</td>
<td>3.23</td>
<td>4.06</td>
<td>4.92</td>
<td>7.55</td>
<td>8.90</td>
</tr>
<tr>
<td>1D-IRBFNa</td>
<td>3.21</td>
<td>4.04</td>
<td>4.89</td>
<td>7.51</td>
<td>8.85</td>
</tr>
<tr>
<td>FDMb</td>
<td>3.24</td>
<td>4.86</td>
<td></td>
<td></td>
<td>8.90</td>
</tr>
<tr>
<td>DQMc</td>
<td>3.33</td>
<td>5.08</td>
<td></td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>(\overline{N_u_i})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 \times 43</td>
<td>3.22</td>
<td>4.03</td>
<td>4.86</td>
<td>7.31</td>
<td>9.15</td>
</tr>
<tr>
<td>53 \times 53</td>
<td>3.22</td>
<td>4.05</td>
<td>4.89</td>
<td>7.38</td>
<td>8.76</td>
</tr>
<tr>
<td>63 \times 63</td>
<td>3.23</td>
<td>4.05</td>
<td>4.91</td>
<td>7.43</td>
<td>8.67</td>
</tr>
<tr>
<td>1D-IRBFNa</td>
<td>3.22</td>
<td>4.04</td>
<td>4.89</td>
<td>7.43</td>
<td>8.70</td>
</tr>
<tr>
<td>FDMb</td>
<td>3.24</td>
<td>4.86</td>
<td></td>
<td></td>
<td>8.90</td>
</tr>
<tr>
<td>DQMc</td>
<td>3.33</td>
<td>5.08</td>
<td></td>
<td></td>
<td>9.37</td>
</tr>
</tbody>
</table>

a (Le-Cao et al., 2009)
b (Moukalled and Acharya, 1996)
c (Shu and Zhu, 2002)

Figure 4.10 shows the contours of temperature, stream function and vorticity of the flow field inside the enclosure for different Rayleigh numbers. The numerical results obtained are symmetric about the vertical center line. The contours of stream function shows that the flow moves up along the inner cylinder wall and the vertical axis to reach the top of the outer cylinder, and then moves down along the outer cylinder wall. There are boundary layers near the bottom of the inner cylinder and near the top of the outer cylinder, while a flow separation occurs near the top of the inner cylinder which forms a thermal plume. Those behaviours agree well with published results in the literature.
Figure 4.10: Concentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for different Rayleigh numbers \(Ra = 5 \times 10^4, 10^5, 5 \times 10^5 \) and \(10^6 \), from top to bottom, using a grid of 63 \(\times \) 63. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
4.4.4 Example 4: Eccentric annulus between a square outer cylinder and a circular inner cylinder

Natural convection heat transfer between a heated circular cylinder placed eccentrically inside a square cylinder is studied. The stream function value on the outer wall is taken to be zero, while the stream function value on the inner wall (ψ_{wall}) is unknown, which can be determined by using a single-valued pressure condition through the following equation.

$$
\oint_{\Gamma} \frac{\partial^3 \psi}{\partial y \partial x^2} dx + \oint_{\Gamma} \frac{\partial^3 \psi}{\partial y^3} dx - \oint_{\Gamma} \frac{\partial^3 \psi}{\partial x^3} dy - \oint_{\Gamma} \frac{\partial^3 \psi}{\partial x \partial y^2} dy = 0.
$$

(4.19)

where Γ is the inner boundary. The reader is referred to the work of Le-Cao et al. (2011) for further details. The geometry and boundary conditions of the present problem are depicted in Figure 4.11, where φ is the angular position of the center of the inner cylinder, R the radius of the inner cylinder and L the side length of the outer square. The dimensionless eccentricity is defined by $\varepsilon_0 = \varepsilon/(L/2 - R)$, where ε is the distance between the centers of the inner and outer cylinders. The simulation is conducted with the parameter values $Pr = 0.71$, $Ra = 3 \times 10^5$ and $L/2R = 2.6$.

The comparison of the maximum stream-function value ψ_{max}, the stream-function values on the inner cylinder ψ_{wall} and the average Nusselt number among the present method and the other methods for different values of ε_0 and φ are shown in Tables 4.4, 4.5 and 4.6, respectively. A grid of 108×108 is taken for the cases $\varepsilon_0 = 0.75$ and $\varphi = 0, -90, 90$, while a grid of 82×82 is used for the other cases. The present results are in good agreement with those of the MQ-DQ (Ding et al., 2005) and 1D-IRBFN (Le-Cao et al., 2011) methods. The differences of ψ_{max} between the present method and the MQ-DQ and the 1D-IRBFN are less than 1.0% and 1.9%, respectively. The differences of Nusselt numbers
between the present results and the MQ-DQ results are less than 1.4%. The differences of ψ_{wall} between the present results with the other results are quite large due to the sensitivity in the determination of stream function value on the inner cylinder wall, which is also mentioned by Ding et al. (2005). Figures 4.12, 4.13, 4.14, 4.15, and 4.16 present the contours of temperature, stream function and vorticity of flow field inside the eccentric annuli with different values of ε_0 and φ. These contours agree well with those in (Ding et al., 2005; Le-Cao et al., 2011).
4.4 Numerical results and discussion

Table 4.4: Eccentric annulus between a square outer cylinder and a circular inner cylinder: Comparison of the maximum stream-function values ψ_{max} for different values of ε_0 and φ.

<table>
<thead>
<tr>
<th>φ</th>
<th>ε_0</th>
<th>DQa</th>
<th>MQ-DQb</th>
<th>ID-IRBFNc</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>-90°</td>
<td>0.25</td>
<td>18.67</td>
<td>18.64</td>
<td>18.63</td>
<td>18.64</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>21.43</td>
<td>21.29</td>
<td>21.30</td>
<td>21.34</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>24.07</td>
<td>23.52</td>
<td>23.47</td>
<td>23.68</td>
</tr>
<tr>
<td>-45°</td>
<td>0.25</td>
<td>18.84</td>
<td>18.50</td>
<td>18.50</td>
<td>18.53</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>19.75</td>
<td>20.03</td>
<td>20.09</td>
<td>20.11</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>20.65</td>
<td>21.01</td>
<td>21.02</td>
<td>21.06</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>21.68</td>
<td>21.59</td>
<td>21.61</td>
<td>21.63</td>
</tr>
<tr>
<td>0°</td>
<td>0.25</td>
<td>17.15</td>
<td>17.00</td>
<td>17.00</td>
<td>17.01</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>18.77</td>
<td>16.97</td>
<td>16.99</td>
<td>16.99</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>16.83</td>
<td>16.84</td>
<td>16.87</td>
<td>16.89</td>
</tr>
<tr>
<td>45°</td>
<td>0.25</td>
<td>15.56</td>
<td>15.32</td>
<td>15.31</td>
<td>15.33</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>14.60</td>
<td>14.35</td>
<td>14.23</td>
<td>14.49</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>13.94</td>
<td>13.61</td>
<td>13.52</td>
<td>13.56</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>12.96</td>
<td>12.98</td>
<td>12.91</td>
<td>13.02</td>
</tr>
<tr>
<td>90°</td>
<td>0.25</td>
<td>12.55</td>
<td>12.39</td>
<td>12.37</td>
<td>12.41</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>11.32</td>
<td>11.38</td>
<td>11.36</td>
<td>11.41</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>10.26</td>
<td>10.09</td>
<td>10.10</td>
<td>10.11</td>
</tr>
</tbody>
</table>

a (Shu et al., 2001)
b (Ding et al., 2005)
c (Le-Cao et al., 2011)

Table 4.5: Eccentric annulus between a square outer cylinder and a circular inner cylinder: Comparison of the stream-function values on the inner cylinder ψ_{wall} for different values of ε_0 and φ.

<table>
<thead>
<tr>
<th>φ</th>
<th>ε_0</th>
<th>DQa</th>
<th>MQ-DQb</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>-90°</td>
<td>0.25</td>
<td>$< 10^{-4}$</td>
<td>$< 10^{-3}$</td>
<td>$< 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>$< 10^{-4}$</td>
<td>$< 10^{-3}$</td>
<td>$< 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>$< 10^{-4}$</td>
<td>$< 10^{-3}$</td>
<td>$< 10^{-3}$</td>
</tr>
<tr>
<td>-45°</td>
<td>0.25</td>
<td>0.11</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.47</td>
<td>0.46</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>1.46</td>
<td>1.46</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>1.80</td>
<td>1.64</td>
<td>1.80</td>
</tr>
<tr>
<td>0°</td>
<td>0.25</td>
<td>0.15</td>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>1.64</td>
<td>0.94</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>1.05</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>45°</td>
<td>0.25</td>
<td>0.12</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.84</td>
<td>0.69</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>1.25</td>
<td>1.19</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.93</td>
<td>1.29</td>
<td>1.43</td>
</tr>
<tr>
<td>90°</td>
<td>0.25</td>
<td>$< 10^{-4}$</td>
<td>$< 10^{-3}$</td>
<td>$< 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>$< 10^{-4}$</td>
<td>$< 10^{-3}$</td>
<td>$< 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>$< 10^{-4}$</td>
<td>$< 10^{-3}$</td>
<td>$< 10^{-3}$</td>
</tr>
</tbody>
</table>

a (Shu et al., 2001)
b (Ding et al., 2005)
Table 4.6: Eccentric annulus between a square outer cylinder and a circular inner cylinder: Comparison of the average Nusselt number Nu for different values of ε_0 and φ.

<table>
<thead>
<tr>
<th>φ</th>
<th>ε_0</th>
<th>DQ^a</th>
<th>MQ-DQb</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>-90°</td>
<td>0.25</td>
<td>6.75</td>
<td>6.74</td>
<td>6.71</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>6.98</td>
<td>6.92</td>
<td>6.88</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>7.95</td>
<td>7.63</td>
<td>7.52</td>
</tr>
<tr>
<td>-45°</td>
<td>0.25</td>
<td>6.90</td>
<td>6.64</td>
<td>6.63</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>6.92</td>
<td>6.68</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>7.06</td>
<td>6.78</td>
<td>6.76</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>7.61</td>
<td>7.29</td>
<td>7.28</td>
</tr>
<tr>
<td>0°</td>
<td>0.25</td>
<td>6.73</td>
<td>6.48</td>
<td>6.46</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>6.72</td>
<td>6.42</td>
<td>6.41</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>7.40</td>
<td>7.03</td>
<td>7.03</td>
</tr>
<tr>
<td>45°</td>
<td>0.25</td>
<td>6.48</td>
<td>6.29</td>
<td>6.29</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>6.25</td>
<td>6.01</td>
<td>5.99</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>6.23</td>
<td>5.96</td>
<td>5.97</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>6.45</td>
<td>6.36</td>
<td>6.36</td>
</tr>
<tr>
<td>90°</td>
<td>0.25</td>
<td>7.05</td>
<td>6.74</td>
<td>6.72</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>6.17</td>
<td>6.15</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>6.90</td>
<td>6.62</td>
<td>6.62</td>
</tr>
</tbody>
</table>

a (Shu et al., 2001)

b (Ding et al., 2005)
4.4 Numerical results and discussion

Figure 4.12: Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50, 0.75$ and 0.95, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = -45^\circ$, using a grid of 82×82. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
Figure 4.13: Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50$ and 0.75, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \phi = 0^\circ$, using a grid of 108×108 for the case $\varepsilon_0 = 0.75$ and a grid of 82×82 for the others. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
Figure 4.14: Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50, 0.75$ and 0.95, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = 45^\circ$, using a grid of 82×82. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
4.4 Numerical results and discussion

Figure 4.15: Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of \(\varepsilon_0 = 0.75, 0.50 \) and 0.25, from top to bottom, \(Ra = 3 \times 10^5, L/2R = 2.6, \phi = 90^\circ \), using a grid of 108 \(\times \) 108 for the case \(\varepsilon_0 = 0.75 \) and a grid of 82 \(\times \) 82 for the others. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
Figure 4.16: Eccentric annulus between a square outer cylinder and a circular inner cylinder: contours of temperature (left), stream function (middle) and vorticity (right) for the cases of $\varepsilon_0 = 0.25, 0.50$ and 0.75, from top to bottom, $Ra = 3 \times 10^5, L/2R = 2.6, \varphi = -90^\circ$, using a grid of 108 \times 108 for the case $\varepsilon_0 = 0.75$ and a grid of 82 \times 82 for the others. Each plot contains 21 contour levels varying linearly from the minimum value to the maximum value.
4.5 Concluding remarks

The local MLS-1D-IRBFN method is developed and successfully applied to simulate the natural convection flows in multi-connected domains. The governing equations are formulated in terms of stream function, vorticity and temperature. The unknown stream function value on the inner boundary is determined by using the single-valued pressure condition. The diffusion terms are discretised by using the LMLS-1D-IRBFN while the nonlinear terms are calculated explicitly by using the 1D-IRBFN method. Uniform Cartesian grids are employed to represent all the problem domains. The numerical results showed that the LMLS-1D-IRBFN approximation produces a very sparse system matrix which helps save a lot of memory, while offers a high level of accuracy as that of the 1D-IRBFN method. The numerical results obtained for a wide range of Rayleigh number and various geometry parameters are in good agreement with the numerical data available in the literature.
Chapter 5

Local MLS-1D-IRBFN method for unsteady incompressible viscous flows

The local moving least square - one dimensional integrated radial basis function network (LMLS-1D-IRBFN) method has been devised for the analysis of steady incompressible viscous flow in Chapter 3 and natural convection in multiply-connected domains in Chapter 4. The LMLS-1D-IRBFN is now extended to a solution of time-dependent problems such as Burgers’ equation, unsteady flow past a square cylinder in a horizontal channel and unsteady flow past a circular cylinder. The present method is combined with a domain decomposition technique to handle large-scale problems. The obtained numerical results compare favourably with other published results in the literature.
5.1 Introduction

Time-dependent analysis plays a very important role in the design of diverse engineering products and systems, e.g. in aerospace, automotive, marine and civil applications. In this chapter, a new efficient numerical method is developed for the solution of time-dependent problems and illustrated with examples such as the well-known Burgers’ equation, unsteady flows past a square cylinder in a horizontal channel, and unsteady flows past a circular cylinder. Burgers’ equation has been studied by many authors to verify their proposed numerical methods because it is the simplest nonlinear equation that includes convection and dissipation terms. Caldwell et al. (1987) presented a moving node finite element method to obtain a solution of Burgers’ equation under different prescribed conditions. Iskander and Mohsen (1992) devised new algorithms based on a combination of linearization and splitting-up for solving this equation. Hon and Mao (1998) solved Burgers’ equation using multiquadric (MQ) for spatial discretisation and a low order explicit finite difference scheme for temporal discretisation. Their numerical results indicated that the major numerical error is from the time integration instead of the MQ spatial approximation. Hassanien et al. (2005) developed fourth-order finite difference method based on two-level three-point finite difference for solving Burgers’ equation. Hashemian and Shodja (2008) proposed a gradient reproducing kernel particle method (GRKPM) for spatial discretisation of Burgers’ equation to obtain equivalent nonlinear ordinary differential equations which are then discretised in time by the Gear’s method. Hosseini and Hashemi (2011) presented a local-RBF meshless method for solving Burgers’ equation with different initial and boundary conditions.

Flows past a circular cylinder have been extensively studied by many researchers to verify their new numerical methods for irregular domains. There is no singularity on a circular cylinder surface and the flow field behind the cylinder contains a variety of fluid dynamic phenomena, which makes the problem inter-
5.1 Introduction

esting as a benchmark. Cheng et al. (2001) applied a discrete vortex method to investigate an unsteady flow past a rotationally oscillating circular cylinder for different values of oscillating amplitude and frequency at a Reynolds number of 200. Based on the numerical results obtained, they provided a map of lock-on and non-lock-on regions which helps to classify the different vortex structure in the wake with respect to the oscillating amplitude and frequency of the cylinder.

For the problem of flow past a square cylinder, singularities occur at the corners of the square cylinder, which poses some challenges in terms of accurate determination of such singularities. In order to obtain a convergent solution, very dense grids are usually generated near the singularities. Davis and Moore (1982) studied unsteady flow past a rectangular cylinder using finite difference method (FDM) with third-order upwind differencing for convection, standard central scheme for diffusion terms and a Leith-type scheme for time integration. Zaki et al. (1994) conducted a numerical study of flow past a fixed square cylinder at various angles of incidence for Reynolds numbers up to 250. Their numerical simulation was based on the stream function-vorticity formulation of the Navier-Stokes equation together with a single-valued pressure condition to make the problem well-posed. Sohankar et al. (1998) presented calculations of unsteady 2-D flows around a square cylinder at different angles of incidence using an incompressible SIMPLEC finite volume code with a non-staggered grid arrangement. The convective terms were discretised using the third-order QUICK differencing scheme, while the diffusive terms were discretised using central differences. Breuer et al. (2000) investigated a confined flow around a square cylinder in a channel with blockage ratio of 1/8 by a lattice-Boltzmann automata (LBA) and a finite volume method (FVM). Turki et al. (2003) studied an unsteady flow and heat transfer characteristics in a channel with a heated square cylinder using a control volume finite element method (CVFEM) adapted to a staggered grid. In their work, the influences of blockage ratio, Reynolds number and Richardson number on the flow pattern were investigated. Berrone and Marro (2009) applied a space-time adaptive method to solve unsteady flow
problems including flows over backward facing step and flows past a square cylinder in a channel. Moussaoui et al. (2010) simulated a 2-D flow and heat transfer in a horizontal channel obstructed by an inclined square cylinder using a hybrid scheme with lattice Boltzmann method to determine the velocity field and FDM to solve the energy equation.

Dhiman et al. (2005) investigated influences of blockage ratio, Prandtl number and Peclet number on the flow and heat transfer characteristics of an isolated square cylinder confined in a channel in a 2-D steady flow regime \(1 \leq Re \leq 45\) using semi-explicit FEM on a non-uniform Cartesian grid. The third order QUICK scheme was used to discretise the convection terms, while the second-order central difference scheme was used to discretise the diffusion terms. The semi-explicit FEM was also applied to a steady laminar mixed convection flow across a heated square cylinder in a channel (Dhiman et al., 2008). Sahu et al. (2010) conducted a study of 2-D unsteady flow of power-law fluids past a square cylinder confined in a channel for different values of Reynolds number \(60 \leq Re \leq 160\), blockage ratio \(\beta_0 = 1/6, 1/4 \text{ and } 1/2\) and power-law flow behaviour index \(0.5 \leq n \leq 1.8\) using the semi-explicit FEM. Bouaziz et al. (2010) employed a control volume finite element method (CVFEM) adapted to the staggered grid to study an unsteady laminar flow and heat transfer of power-law fluids in 2-D horizontal plane channel with a heated square cylinder.

In the past decades, some mesh-free and local RBF-based methods have been developed for solving fluid flow problems. Shu et al. (2003) presented a local RBF-based differential quadrature method (local RBF-DQ) for a simulation of natural convection in a square cavity. In their study, three layers of orthogonal grid near and including the boundary were generated for imposing the Neumann condition of temperature and the vorticity on the wall. The derivatives of the field variables in the boundary conditions were then discretised by the conventional one-sided second order finite difference scheme. The local RBF-DQ method was also employed for solving several cases of incompressible flows
5.1 Introduction

including a driven-cavity flow, flow past a cylinder, and flow around two staggered circular cylinders (Shu et al., 2005). Ding et al. (2007) presented the mesh-free least square-based finite difference (MLSFD) method to simulate a flow field around two circular cylinders arranged in tandem and side-by-side. Vertnik and Šarler (2006) presented an explicit local RBF collocation method for diffusion problems. Sanyasiraju and Chandhini (2008) developed a local RBF based gridfree scheme for unsteady incompressible viscous flows in terms of primitive variables. Chen et al. (2008) employed a partition of unity concept (Babuška and Melenk, 1997) to combine the reproducing kernel and RBF approximations to yield a local approximation that enjoys the exponential convergence of RBF and improves the conditioning of the discrete system. Le et al. (2010) proposed a locally supported moving IRBFN-based meshless method for solving various problems including heat transfer, elasticity of both compressible and incompressible materials, and linear static crack problems.

Another approach for solving PDEs is the so-called Cartesian grid method where the governing equations are discretised with a fixed Cartesian grid. This approach significantly reduces the grid generation cost and has a great potential over the conventional body-fitted methods when solving problems with moving boundary and complicated geometry. Udaykumar et al. (2001) presented a Cartesian grid method for computing fluid flows with complex immersed and moving boundaries. The incompressible Navier-Stokes equations are discretised using a second-order FVM, and second-order fractional-step scheme is employed for time integration. Russell and Wang (2003) presented a Cartesian grid method for solving 2-D incompressible viscous flows around multiple moving objects based on stream function-vorticity formulation. Zheng and Zhang (2008) employed an immersed-boundary method to predict the flow structure around a transversely oscillating cylinder. The influences of oscillating frequency on the drag and lift acting on the cylinder were investigated.

As an alternative to the conventional differentiated radial basis function network
(DRBFN) method (Kansa, 1990b), Mai-Duy and Tran-Cong (2001a) proposed the use of integration to construct the RBFN expressions (the IRBFN method) for the approximation of a function and its derivatives and for the solution of PDEs. Numerical results showed that the IRBFN method achieves superior accuracy (Mai-Duy and Tran-Cong, 2001a,b). Mai-Cao and Tran-Cong (2005) developed numerical schemes combining the IRBFN method with different time integration techniques for solving time-dependent parabolic PDEs, hyperbolic PDEs, and advection-diffusion equations. A one-dimensional integrated radial basis function network (1D-IRBFN) collocation method for the solution of second- and fourth-order PDEs was presented by Mai-Duy and Tanner (2007). The 1D-IRBFN method is much more efficient than the original IRBFN method reported in Mai-Duy and Tran-Cong (2001a). Le-Cao et al. (2011) employed the 1D-IRBFN method to simulate unsymmetrical flows of a Newtonian fluid in multiply-connected domains using the stream-function and temperature formulation. Ngo-Cong et al. (2011) extended this method to investigate free vibration of composite laminated plates based on first-order shear deformation theory (Chapter 2). Ngo-Cong et al. (2012) proposed a local moving least square - one dimensional integrated radial basis function network method (LMLS-1D-IRBFN) for simulating 2-D steady incompressible viscous flows in terms of stream function and vorticity (Chapter 3). In the present chapter, we further extend the LMLS-1D-IRBFN method for solving time-dependent problems and demonstrate the new procedure with the simulation of Burgers’ equation, unsteady flows past a square cylinder in a horizontal channel, and unsteady flows past a circular cylinder. The present numerical procedure is combined with a domain decomposition technique to handle large-scale problems.

The chapter is organised as follows. The LMLS-1D-IRBFN method is presented in Section 5.2. The governing equations for incompressible viscous flows are given in Section 5.3. Several numerical examples are investigated using the proposed method in Section 5.4. Section 5.5 concludes the chapter.
5.2 Local moving least square - one dimensional integrated radial basis function network technique

A schematic outline of the LMLS-1D-IRBFN method is depicted in Figure 5.1. The proposed method with 3-node support domains \((n = 3)\) and 5-node local 1D-IRBF networks \((n_s = 5)\) is presented here. On an \(x\)-grid line \([l]\), a global interpolant for the field variable at a grid point \(x_i\) is sought in the form

\[
u(x_i) = \sum_{j=1}^{n} \bar{\phi}_j(x_i)u^{[j]}(x_i), \tag{5.1}
\]

where \(\{\bar{\phi}_j\}_{j=1}^{n}\) is a set of the partition of unity functions constructed using MLS approximants (Liu, 2003); \(u^{[j]}(x_i)\) the nodal function value obtained from a local interpolant represented by a 1D-IRBF network \([j]\); \(n\) the number of nodes in the support domain of \(x_i\). In (5.1), MLS approximants are presently based on linear polynomials, which are defined in terms of 1 and \(x\). It is noted that the MLS shape functions possess a so-called partition of unity properties as follows.

\[
\sum_{j=1}^{n} \bar{\phi}_j(x) = 1. \tag{5.2}
\]

Relevant derivatives of \(u\) at \(x_i\) can be obtained by differentiating (5.1)

\[
\frac{\partial u(x_i)}{\partial x} = \sum_{j=1}^{n} \left(\frac{\partial \bar{\phi}_j(x_i)}{\partial x}u^{[j]}(x_i) + \bar{\phi}_j(x_i) \frac{\partial u^{[j]}(x_i)}{\partial x} \right), \tag{5.3}
\]

\[
\frac{\partial^2 u(x_i)}{\partial x^2} = \sum_{j=1}^{n} \left(\frac{\partial^2 \bar{\phi}_j(x_i)}{\partial x^2}u^{[j]}(x_i) + 2 \frac{\partial \bar{\phi}_j(x_i)}{\partial x} \frac{\partial u^{[j]}(x_i)}{\partial x} + \bar{\phi}_j(x_i) \frac{\partial^2 u^{[j]}(x_i)}{\partial x^2} \right). \tag{5.4}
\]
5.3 Governing equations for 2-D unsteady incompressible viscous flows

The governing equations for 2-D incompressible viscous flows written in terms of stream function ψ and vorticity ω are given by

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega, \quad (5.5)$$

$$\frac{1}{Re} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) = \frac{\partial \omega}{\partial t} + \left(\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} \right), \quad (5.6)$$

where Re is the Reynolds number, t the time, and $(x, y)^T$ the position vector. The x and y components of the velocity vector can be defined in terms of the

\[u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \]
stream function as
\[u = \frac{\partial \psi}{\partial y}, \]
\[v = -\frac{\partial \psi}{\partial x}. \]

The computational boundary conditions for vorticity can be computed as
\[\omega_w = -\left(\frac{\partial^2 \psi_w}{\partial x^2} + \frac{\partial^2 \psi_w}{\partial y^2} \right) \]
where the subscript \(w \) is used to denote quantities on the boundary. For curved boundaries, a formula reported in (Le-Cao et al., 2009) is employed here to derive the vorticity boundary conditions at boundary points on \(x \)- and \(y \)-grid lines as follows.

\[\omega_{w}^{(x)} = -\left[1 + \left(\frac{t_x}{t_y} \right)^2 \right] \frac{\partial^2 \psi_w}{\partial x^2} - q_y, \]
\[\omega_{w}^{(y)} = -\left[1 + \left(\frac{t_y}{t_x} \right)^2 \right] \frac{\partial^2 \psi_w}{\partial y^2} - q_x, \]

where \(q_x \) and \(q_y \) are known quantities defined by
\[q_x = -\frac{t_y}{t_x^2} \frac{\partial^2 \psi_w}{\partial y \partial s} + \frac{1}{t_x} \frac{\partial^2 \psi_w}{\partial x \partial s}, \]
\[q_y = -\frac{t_x}{t_y^2} \frac{\partial^2 \psi_w}{\partial x \partial s} + \frac{1}{t_y} \frac{\partial^2 \psi_w}{\partial y \partial s}, \]
in which \(t_x = \partial x / \partial s, t_y = \partial y / \partial s \) and \(s \) is the direction tangential to the curved surface.

Boundary conditions for stream function are specified in the following examples.
5.4 Numerical results and discussion

Several time-dependent problems are considered in this section to study the performance of the present numerical procedure. The domains of interest are discretised using Cartesian grids. The simple Euler scheme is used for time integration. For Burgers’ equation, the LMLS-1D-IRBFN method is employed to discretise both diffusion and convection terms. For fluid flow problems, the LMLS-1D-IRBFN is used to discretise the diffusion terms while the convection terms are explicitly calculated by using the 1D-IRBFN technique. A domain decomposition technique is employed for solving the fluid flow problems. By using the LMLS-1D-IRBFN method to discretise the left hand side of governing equations and the LU decomposition technique to solve the resultant sparse system of simultaneous equations, the computational cost and data storage requirements are reduced.

5.4.1 Example 1: Burgers’ equation

The present numerical method is first verified through the solution of Burgers’ equation as follows.

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{1}{Re} \frac{\partial^2 u}{\partial x^2}. \]
(5.14)

The diffusion and convection terms in Equation (5.14) are discretised on a uniform grid using LMLS-1D-IRBFN method implicitly and explicitly, respectively.

Approximation of shock wave propagation

Consider the Burgers’ equation (5.14) defined on a segment \(0 \leq x \leq 1, t \geq 0\) and subject to Dirichlet boundary conditions. The initial and boundary conditions
can be calculated from the following analytical solution (Hassanien et al., 2005; Hosseini and Hashemi, 2011)

\[u_E(x, t) = \frac{[\alpha_0 + \mu_0 + (\mu_0 - \alpha_0) \exp(\eta)]}{1 + \exp(\eta)}, \quad (5.15)\]

where \(\eta = \alpha_0 Re(x - \mu_0 t - \beta_0)\), \(\alpha_0 = 0.4, \beta_0 = 0.125, \mu_0 = 0.6, Re = 100\).

Table 5.1 shows the comparison among the numerical results of LMLS-1D-IRBFN and 1D-IRBFN methods and the exact solution at time \(t = 1.0\) for several time step sizes and using a grid of 61. It can be seen that the accuracy is greatly improved by reducing the time step. Grid convergence studies for both methods with the same time step of \(10^{-3}\) are given in Table 5.2. The numerical results show that the accuracy is not improved much with increasing grid density for both methods, which indicates that the major numerical error is not from the LMLS-1D-IRBFN and 1D-IRBFN spatial approximation, but from the temporal discretisation. It is noted that the LMLS-1D-IRBFN method offers the same level of accuracy as the 1D-IRBFN method.

Sinusoidal initial condition

Consider the Burgers’ Equation (5.14) defined on a segment \(0 \leq x \leq 1, t \geq 0\) and subject to the following Dirichlet boundary conditions and initial condition.

\[u(0, t) = u(1, t) = 0, \quad t > 0, \quad (5.16)\]
\[u(x, 0) = \sin \pi x, \quad 0 \leq x \leq 1. \quad (5.17)\]

The corresponding analytical solution was found by Cole (1951) as follows.

\[u_E(x, t) = \frac{2\pi \varepsilon \sum_{j=1}^{\infty} jk_j \sin(j\pi x) \exp(-j^2\pi^2\varepsilon t)}{k_0 + \sum_{j=1}^{\infty} k_j \cos(j\pi x) \exp(-j^2\pi^2\varepsilon t)}, \quad (5.18)\]
Table 5.1: Burgers’ equations, approximation of shock wave propagation: comparison of numerical results and exact solution at \(t = 1.0 \) for \(Re = 100 \) and several time step sizes, using a grid of 61. (1) 1D-IRBFN, (2) LMLS-1D-IRBFN

<table>
<thead>
<tr>
<th>(x)</th>
<th>Exact</th>
<th>(dt = 10^{-2}) (1)</th>
<th>(dt = 10^{-3}) (1)</th>
<th>(dt = 10^{-4}) (1)</th>
<th>(dt = 10^{-4}) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.056</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.111</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.167</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.222</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>0.278</td>
<td>0.9978</td>
<td>0.9999</td>
<td>0.9998</td>
<td>0.9998</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.333</td>
<td>0.9801</td>
<td>0.9991</td>
<td>0.9829</td>
<td>0.9829</td>
<td>0.9829</td>
</tr>
<tr>
<td>0.389</td>
<td>0.8473</td>
<td>0.9153</td>
<td>0.8545</td>
<td>0.8545</td>
<td>0.8545</td>
</tr>
<tr>
<td>0.444</td>
<td>0.4518</td>
<td>0.4516</td>
<td>0.4533</td>
<td>0.4533</td>
<td>0.4533</td>
</tr>
<tr>
<td>0.500</td>
<td>0.2379</td>
<td>0.2387</td>
<td>0.2383</td>
<td>0.2383</td>
<td>0.2383</td>
</tr>
<tr>
<td>0.556</td>
<td>0.2043</td>
<td>0.2050</td>
<td>0.2050</td>
<td>0.2050</td>
<td>0.2050</td>
</tr>
<tr>
<td>0.611</td>
<td>0.2005</td>
<td>0.2006</td>
<td>0.2006</td>
<td>0.2006</td>
<td>0.2006</td>
</tr>
<tr>
<td>0.667</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
</tr>
<tr>
<td>0.722</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.778</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.833</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.889</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.944</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
</tbody>
</table>

\[Ne = 2.45E-02 \quad 2.42E-02 \quad 2.75E-03 \quad 2.86E-03 \quad 9.51E-04 \quad 1.12E-03 \]

where \(\varepsilon = 1/Re \), \(k_0 = \int_0^1 \exp \left(-1 - \cos \frac{\pi x}{2\pi \varepsilon} \right) \, dx \), and

\[k_j = 2 \int_0^1 \cos(j \pi x) \exp \left(-1 - \cos \frac{\pi x}{2\pi \varepsilon} \right) \, dx. \]

Table 5.3 presents the numerical results at several positions \(x \) and times \(t \) for Reynolds number of 10 and several grid sizes in comparison with the exact solution and the numerical results of Hosseini and Hashemi (2011) who used a local-RBF collocation for spatial discretisation and the explicit Euler scheme for time discretisation, while the corresponding comparison for the case of Reynolds number of 100 is given in Table 5.4. For the purpose of comparison, the same time step is taken to be \(10^{-3} \) in these cases. It can be seen that the present numerical results are slightly more accurate than those of the local-RBF in general.

The numerical results for the case of a large Reynolds number of 10000 at time
Table 5.2: Burgers’ equations, approximation of shock wave propagation: grid convergence study of numerical results for \(Re = 100, t = 1.0, \) and \(\Delta t = 10^{-3} \). (1) 1D-IRBFN, (2) LMLS-1D-IRBFN

<table>
<thead>
<tr>
<th>(x)</th>
<th>Exact</th>
<th>(n_x = 41) (1)</th>
<th>(n_x = 41) (2)</th>
<th>(n_x = 61) (1)</th>
<th>(n_x = 61) (2)</th>
<th>(n_x = 81) (1)</th>
<th>(n_x = 81) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.056</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.111</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.167</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.222</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.278</td>
<td>0.9978</td>
<td>0.9983</td>
<td>0.9979</td>
<td>0.9983</td>
<td>0.9982</td>
<td>0.9983</td>
<td>0.9983</td>
</tr>
<tr>
<td>0.333</td>
<td>0.9801</td>
<td>0.9829</td>
<td>0.9848</td>
<td>0.9829</td>
<td>0.9831</td>
<td>0.9829</td>
<td>0.9829</td>
</tr>
<tr>
<td>0.389</td>
<td>0.8473</td>
<td>0.8546</td>
<td>0.8554</td>
<td>0.8545</td>
<td>0.8547</td>
<td>0.8545</td>
<td>0.8546</td>
</tr>
<tr>
<td>0.444</td>
<td>0.4518</td>
<td>0.4534</td>
<td>0.4552</td>
<td>0.4533</td>
<td>0.4539</td>
<td>0.4533</td>
<td>0.4535</td>
</tr>
<tr>
<td>0.500</td>
<td>0.2379</td>
<td>0.2381</td>
<td>0.2372</td>
<td>0.2382</td>
<td>0.2379</td>
<td>0.2382</td>
<td>0.2381</td>
</tr>
<tr>
<td>0.556</td>
<td>0.2043</td>
<td>0.2044</td>
<td>0.2043</td>
<td>0.2044</td>
<td>0.2044</td>
<td>0.2044</td>
<td>0.2044</td>
</tr>
<tr>
<td>0.611</td>
<td>0.2005</td>
<td>0.2005</td>
<td>0.2005</td>
<td>0.2005</td>
<td>0.2005</td>
<td>0.2005</td>
<td>0.2005</td>
</tr>
<tr>
<td>0.667</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
<td>0.2001</td>
</tr>
<tr>
<td>0.722</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.778</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.833</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.889</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>0.944</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
<tr>
<td>1.000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
<td>0.2000</td>
</tr>
</tbody>
</table>

\(N = 2.78 \times 10^{-3} \; 3.48 \times 10^{-3} \; 2.75 \times 10^{-3} \; 2.86 \times 10^{-3} \; 2.75 \times 10^{-3} \; 2.78 \times 10^{-3} \)

\(t = 1.0 \) are described in Tables 5.5 and 5.6 using the same grid size of 301 and the same time step of \(10^{-4} \) as reported in (Hosseini and Hashemi, 2011). Table 5.5 gives the numerical results at a uniform grid with a grid spacing of \(1/8 \) in comparison with the exact solution and the results of other authors, while the corresponding comparison of numerical results at the same grid positions as reported in (Hassanien et al., 2005; Hashemian and Shodja, 2008; Hosseini and Hashemi, 2011) are provided in Table 5.6. Those comparisons show that the present numerical results are in good agreement with the exact and other numerical method solutions.
Table 5.3: Burgers’ equations, sinusoidal initial condition: comparison among the numerical results of LMLS-1D-IRBFN and Local-RBF (Hosseini and Hashemi, 2011) and the analytical solution for $Re = 10$, $\Delta t = 10^{-3}$.

<table>
<thead>
<tr>
<th>x</th>
<th>t</th>
<th>Exact</th>
<th>$n_x = 9$</th>
<th>$n_x = 33$</th>
<th>$n_x = 57$</th>
<th>$n_x = 81$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Present</td>
<td>Local-RBF</td>
<td>Present</td>
<td>Local-RBF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>0.25</td>
<td>0.4</td>
<td>0.30889</td>
<td>0.30820</td>
<td>0.30838</td>
<td>0.30838</td>
<td>0.30839</td>
</tr>
<tr>
<td>0.6</td>
<td>0.24074</td>
<td>0.24025</td>
<td>0.24040</td>
<td>0.24040</td>
<td>0.24059</td>
<td>0.24040</td>
</tr>
<tr>
<td>0.8</td>
<td>0.19568</td>
<td>0.19556</td>
<td>0.19543</td>
<td>0.19543</td>
<td>0.19560</td>
<td>0.19543</td>
</tr>
<tr>
<td>1.0</td>
<td>0.16256</td>
<td>0.16291</td>
<td>0.16238</td>
<td>0.16238</td>
<td>0.16253</td>
<td>0.16238</td>
</tr>
<tr>
<td>3.0</td>
<td>0.02720</td>
<td>0.02762</td>
<td>0.02720</td>
<td>0.02720</td>
<td>0.02723</td>
<td>0.02720</td>
</tr>
<tr>
<td>0.50</td>
<td>0.4</td>
<td>0.56963</td>
<td>0.57036</td>
<td>0.56896</td>
<td>0.56896</td>
<td>0.56929</td>
</tr>
<tr>
<td>0.6</td>
<td>0.44721</td>
<td>0.44865</td>
<td>0.44760</td>
<td>0.44699</td>
<td>0.44701</td>
<td>0.44669</td>
</tr>
<tr>
<td>0.8</td>
<td>0.35924</td>
<td>0.36150</td>
<td>0.35886</td>
<td>0.35885</td>
<td>0.35913</td>
<td>0.35885</td>
</tr>
<tr>
<td>1.0</td>
<td>0.29192</td>
<td>0.29463</td>
<td>0.29163</td>
<td>0.29162</td>
<td>0.29187</td>
<td>0.29162</td>
</tr>
<tr>
<td>3.0</td>
<td>0.04021</td>
<td>0.04081</td>
<td>0.04092</td>
<td>0.04020</td>
<td>0.04025</td>
<td>0.04020</td>
</tr>
<tr>
<td>0.75</td>
<td>0.4</td>
<td>0.62544</td>
<td>0.62926</td>
<td>0.62496</td>
<td>0.62511</td>
<td>0.62540</td>
</tr>
<tr>
<td>0.6</td>
<td>0.48721</td>
<td>0.49318</td>
<td>0.48658</td>
<td>0.48691</td>
<td>0.48712</td>
<td>0.48691</td>
</tr>
<tr>
<td>0.8</td>
<td>0.37392</td>
<td>0.37992</td>
<td>0.37337</td>
<td>0.37369</td>
<td>0.37385</td>
<td>0.37369</td>
</tr>
<tr>
<td>1.0</td>
<td>0.28747</td>
<td>0.29251</td>
<td>0.28688</td>
<td>0.28731</td>
<td>0.28744</td>
<td>0.28731</td>
</tr>
<tr>
<td>3.0</td>
<td>0.02977</td>
<td>0.03021</td>
<td>0.02970</td>
<td>0.02977</td>
<td>0.02981</td>
<td>0.02977</td>
</tr>
</tbody>
</table>

Table 5.4: Burgers’ equations, sinusoidal initial condition: comparison among the numerical results of LMLS-1D-IRBFN and Local-RBF (Hosseini and Hashemi, 2011) and the analytical solution for $Re = 100$, $\Delta t = 10^{-3}$.

<table>
<thead>
<tr>
<th>x</th>
<th>t</th>
<th>Exact</th>
<th>$n_x = 9$</th>
<th>$n_x = 33$</th>
<th>$n_x = 57$</th>
<th>$n_x = 81$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Present</td>
<td>Local-RBF</td>
<td>Present</td>
<td>Local-RBF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>0.25</td>
<td>0.4</td>
<td>0.34191</td>
<td>0.33414</td>
<td>0.33396</td>
<td>0.33411</td>
<td>0.33794</td>
</tr>
<tr>
<td>0.6</td>
<td>0.26896</td>
<td>0.26553</td>
<td>0.26328</td>
<td>0.26396</td>
<td>0.26414</td>
<td>0.26841</td>
</tr>
<tr>
<td>0.8</td>
<td>0.22148</td>
<td>0.21759</td>
<td>0.21723</td>
<td>0.21723</td>
<td>0.21723</td>
<td>0.22107</td>
</tr>
<tr>
<td>1.0</td>
<td>0.18819</td>
<td>0.18523</td>
<td>0.18488</td>
<td>0.18489</td>
<td>0.18489</td>
<td>0.18877</td>
</tr>
<tr>
<td>3.0</td>
<td>0.07511</td>
<td>0.07416</td>
<td>0.07438</td>
<td>0.07438</td>
<td>0.07438</td>
<td>0.07504</td>
</tr>
<tr>
<td>0.50</td>
<td>0.4</td>
<td>0.66071</td>
<td>0.64995</td>
<td>0.64908</td>
<td>0.64908</td>
<td>0.65961</td>
</tr>
<tr>
<td>0.6</td>
<td>0.52942</td>
<td>0.51822</td>
<td>0.51971</td>
<td>0.51972</td>
<td>0.51972</td>
<td>0.52849</td>
</tr>
<tr>
<td>0.8</td>
<td>0.43914</td>
<td>0.42785</td>
<td>0.43139</td>
<td>0.43140</td>
<td>0.43140</td>
<td>0.43839</td>
</tr>
<tr>
<td>1.0</td>
<td>0.37442</td>
<td>0.36512</td>
<td>0.36820</td>
<td>0.36821</td>
<td>0.36821</td>
<td>0.37381</td>
</tr>
<tr>
<td>3.0</td>
<td>0.15018</td>
<td>0.14802</td>
<td>0.14872</td>
<td>0.14873</td>
<td>0.14873</td>
<td>0.15004</td>
</tr>
<tr>
<td>0.75</td>
<td>0.4</td>
<td>0.91026</td>
<td>0.86560</td>
<td>0.90742</td>
<td>0.90749</td>
<td>0.91015</td>
</tr>
<tr>
<td>0.6</td>
<td>0.76724</td>
<td>0.65947</td>
<td>0.75810</td>
<td>0.75814</td>
<td>0.75814</td>
<td>0.76643</td>
</tr>
<tr>
<td>0.8</td>
<td>0.61740</td>
<td>0.55693</td>
<td>0.63810</td>
<td>0.63812</td>
<td>0.63812</td>
<td>0.64652</td>
</tr>
<tr>
<td>1.0</td>
<td>0.55605</td>
<td>0.48796</td>
<td>0.54787</td>
<td>0.54789</td>
<td>0.54789</td>
<td>0.55527</td>
</tr>
<tr>
<td>3.0</td>
<td>0.22481</td>
<td>0.20834</td>
<td>0.22261</td>
<td>0.22265</td>
<td>0.22265</td>
<td>0.22459</td>
</tr>
</tbody>
</table>
5.4 Numerical results and discussion

Table 5.5: Burgers’ equations, sinusoidal initial condition: comparison among numerical results and exact solution for $Re = 10000$, $\Delta t = 10^{-4}$, using a grid of 301.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.056</td>
<td>0.0422</td>
<td>0.0422</td>
<td>0.0419</td>
<td>0.0424</td>
<td>0.0421</td>
</tr>
<tr>
<td>0.111</td>
<td>0.0843</td>
<td>0.0844</td>
<td>0.0839</td>
<td>0.0843</td>
<td>0.0842</td>
</tr>
<tr>
<td>0.167</td>
<td>0.1263</td>
<td>0.1266</td>
<td>0.1253</td>
<td>0.1263</td>
<td>0.1263</td>
</tr>
<tr>
<td>0.222</td>
<td>0.1684</td>
<td>0.1687</td>
<td>0.1692</td>
<td>0.1684</td>
<td>0.1683</td>
</tr>
<tr>
<td>0.278</td>
<td>0.2103</td>
<td>0.2108</td>
<td>0.2034</td>
<td>0.2103</td>
<td>0.2103</td>
</tr>
<tr>
<td>0.333</td>
<td>0.2522</td>
<td>0.2527</td>
<td>0.2666</td>
<td>0.2522</td>
<td>0.2521</td>
</tr>
<tr>
<td>0.389</td>
<td>0.2939</td>
<td>0.2946</td>
<td>0.2527</td>
<td>0.2939</td>
<td>0.2939</td>
</tr>
<tr>
<td>0.444</td>
<td>0.3355</td>
<td>0.3362</td>
<td>0.3966</td>
<td>0.3355</td>
<td>0.3355</td>
</tr>
<tr>
<td>0.500</td>
<td>0.3769</td>
<td>0.3778</td>
<td>0.2350</td>
<td>0.3769</td>
<td>0.3769</td>
</tr>
<tr>
<td>0.556</td>
<td>0.4182</td>
<td>0.4191</td>
<td>0.5480</td>
<td>0.4182</td>
<td>0.4182</td>
</tr>
<tr>
<td>0.611</td>
<td>0.4592</td>
<td>0.4601</td>
<td>0.2578</td>
<td>0.4592</td>
<td>0.4592</td>
</tr>
<tr>
<td>0.667</td>
<td>0.5000</td>
<td>0.5009</td>
<td>0.6049</td>
<td>0.4999</td>
<td>0.4999</td>
</tr>
<tr>
<td>0.722</td>
<td>0.5404</td>
<td>0.5414</td>
<td>0.6014</td>
<td>0.5404</td>
<td>0.5404</td>
</tr>
<tr>
<td>0.778</td>
<td>0.5806</td>
<td>0.5816</td>
<td>0.4630</td>
<td>0.5802</td>
<td>0.5805</td>
</tr>
<tr>
<td>0.833</td>
<td>0.6203</td>
<td>0.6213</td>
<td>0.7011</td>
<td>0.6201</td>
<td>0.6202</td>
</tr>
<tr>
<td>0.889</td>
<td>0.6596</td>
<td>0.6605</td>
<td>0.6717</td>
<td>0.6600</td>
<td>0.6595</td>
</tr>
<tr>
<td>0.944</td>
<td>0.6983</td>
<td>0.6992</td>
<td>0.7261</td>
<td>0.6957</td>
<td>0.6982</td>
</tr>
</tbody>
</table>

Table 5.6: Burgers’ equations, sinusoidal initial condition: comparison of numerical results for $Re = 10000$, $\Delta t = 10^{-4}$, using a grid of 301.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
<td>0.0379</td>
<td>0.0379</td>
<td>0.0379</td>
<td>0.0379</td>
</tr>
<tr>
<td>0.110</td>
<td>0.0834</td>
<td>0.0834</td>
<td>0.0833</td>
<td>0.0834</td>
</tr>
<tr>
<td>0.160</td>
<td>0.1213</td>
<td>0.1213</td>
<td>0.1212</td>
<td>0.1213</td>
</tr>
<tr>
<td>0.220</td>
<td>0.1667</td>
<td>0.1667</td>
<td>0.1666</td>
<td>0.1667</td>
</tr>
<tr>
<td>0.270</td>
<td>0.2044</td>
<td>0.2044</td>
<td>0.2044</td>
<td>0.2044</td>
</tr>
<tr>
<td>0.330</td>
<td>0.2469</td>
<td>0.2497</td>
<td>0.2496</td>
<td>0.2496</td>
</tr>
<tr>
<td>0.380</td>
<td>0.2872</td>
<td>0.2872</td>
<td>0.2871</td>
<td>0.2872</td>
</tr>
<tr>
<td>0.440</td>
<td>0.3322</td>
<td>0.3322</td>
<td>0.3321</td>
<td>0.3322</td>
</tr>
<tr>
<td>0.500</td>
<td>0.3769</td>
<td>0.3769</td>
<td>0.3768</td>
<td>0.3769</td>
</tr>
<tr>
<td>0.550</td>
<td>0.4140</td>
<td>0.4141</td>
<td>0.4140</td>
<td>0.4140</td>
</tr>
<tr>
<td>0.610</td>
<td>0.4584</td>
<td>0.4584</td>
<td>0.4583</td>
<td>0.4583</td>
</tr>
<tr>
<td>0.660</td>
<td>0.4951</td>
<td>0.4951</td>
<td>0.4950</td>
<td>0.4950</td>
</tr>
<tr>
<td>0.720</td>
<td>0.5388</td>
<td>0.5388</td>
<td>0.5387</td>
<td>0.5388</td>
</tr>
<tr>
<td>0.770</td>
<td>0.5749</td>
<td>0.5749</td>
<td>0.5748</td>
<td>0.5749</td>
</tr>
<tr>
<td>0.830</td>
<td>0.6179</td>
<td>0.6179</td>
<td>0.6178</td>
<td>0.6179</td>
</tr>
<tr>
<td>0.880</td>
<td>0.6533</td>
<td>0.6533</td>
<td>0.6530</td>
<td>0.6532</td>
</tr>
<tr>
<td>0.940</td>
<td>0.6952</td>
<td>0.6952</td>
<td>0.6890</td>
<td>0.6941</td>
</tr>
</tbody>
</table>
5.4 Numerical results and discussion

5.4.2 Example 2: Steady and unsteady flows past a square cylinder in a horizontal channel

The steady and unsteady flows past a square cylinder in a horizontal channel are considered here. The present LMLS-1D-IRBFN method is used for discretisation of diffusion terms implicitly, while the 1D-IRBFN method is employed to calculate the convection terms explicitly. The problem geometry and boundary conditions are described in Figure 5.2. Note that computational boundary conditions for vorticity are determined by Equation (5.9). The distances from the inlet and outlet to the center of the square cylinder are taken to be $L_u = 6.5D$ and $L_d = 19.5D$, respectively, where D is the side length of the square cylinder taken to be 1. Those distances are chosen based on the studies of (Sohankar et al., 1998; Turki et al., 2003; Bouaziz et al., 2010).

Figure 5.2: Flow past a square cylinder in a channel: geometry and boundary conditions. The blockage ratio is defined as $\beta_0 = D/H$. Note that computational boundary conditions for vorticity are determined by Equation (5.9).

A fully developed laminar flow is assumed at the inlet, thus the inlet velocity is described by a parabolic profile as follows.

$$u = u_{\text{max}} \left(1 - \left(\frac{2y}{H}\right)^2\right)$$ \hspace{1cm} (5.19)

where u_{max} the maximum velocity at the inlet taken to be 1; and H the height of the channel. The stream function values at the top and bottom walls of the channel (ψ_t and ψ_b) can be determined through Equations 5.7, 5.8 and 5.19.
When solving fluid flow problems involving the vortex shedding, the proper boundary condition at the outlet is a very important issue. A suitable outflow boundary condition allows the flow to exit the domain smoothly and has a minimum effect on the behaviour of the flow field. In the present study, the Neumann boundary conditions of the stream function and vorticity at the outlet are considered. It is noted that the value of stream function on the cylinder wall (ψ_w) is equal to zero for the case of steady flows, but it is unknown for the case of unsteady flows. This value ψ_w varies with respect to time and can be determined by using a single-valued pressure condition (Lewis, 1979; Le-Cao et al., 2011).

The non-overlapping domain decomposition technique (Quarteroni and Valli, 1999) is employed here in order to reduce the size of memory required. The continuity of the stream function and vorticity variables and their first-order derivatives are imposed at the subdomain interfaces. The computational domain is decomposed into 24 subdomains. Each subdomain is represented by a uniform Cartesian grid as shown in Figure 5.3. Fine grids are generated in the domains near the cylinder in order to obtain reliable and accurate numerical results.

![Figure 5.3: Flow past a square cylinder in a channel: grid configuration.](image)

Calculation of drag and lift coefficients

From the primitive variable formulation, the pressure gradients ($\partial p/\partial x$, $\partial p/\partial y$)
on the square cylinder are given by

\[
\frac{\partial p}{\partial x} = \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \left(\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial x} \right),
\]

(5.20)

\[
\frac{\partial p}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \left(\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} \right),
\]

(5.21)

where \(Re \) is Reynolds number defined by \(Re = u_{max} D / \nu \), \(D \) the side length of the square cylinder, \(\nu \) the kinematic viscosity. For the case of stationary cylinder, the convection terms are equal to zero on the cylinder surface, Equations (5.20) and (5.21) then become

\[
\frac{\partial p}{\partial x} = \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right),
\]

(5.22)

\[
\frac{\partial p}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right).
\]

(5.23)

The vorticity can be determined as

\[
\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}.
\]

(5.24)

Making use of (5.24) along the top and the bottom of the square cylinder and differentiating both sides with respect to \(y \) result in

\[
\frac{\partial \omega}{\partial y} = -\frac{\partial^2 u}{\partial y^2}.
\]

(5.25)

From Equations (5.22) and (5.25), the gradients of pressure along the bottom and the top walls are determined as

\[
\frac{\partial p}{\partial x} = \frac{1}{Re \frac{\partial \omega}{\partial y}}.
\]

(5.26)

In a similar fashion, one can calculate the gradients of pressure along the front and the rear walls as follows.

\[
\frac{\partial p}{\partial y} = \frac{1}{Re \frac{\partial \omega}{\partial x}}.
\]

(5.27)
Integrating Equations (5.26) and (5.27) along the horizontal and vertical walls, respectively, the pressure distribution on the cylinder surface can be determined.

Drag and lift coefficients can be determined as

\[C_D = \frac{F_D}{\frac{1}{2} \rho u^2_{\text{max}} D}, \]
\[C_L = \frac{F_L}{\frac{1}{2} \rho u^2_{\text{max}} D}, \]

(5.28)
(5.29)

where \(\rho \) is fluid density, and the drag \(F_D \) and lift \(F_L \) are defined by

\[F_D = F_{D_p} + F_{D_f}, \]
\[F_L = F_{L_p} + F_{L_f}, \]

(5.30)
(5.31)

in which

\[F_{D_p} = \int_0^1 (p_f - p_r) dy, \]
\[F_{L_p} = \int_0^1 (p_b - p_t) dx, \]

(5.32)
(5.33)

\[F_{D_f} = \int_0^1 (\tau_f - \tau_b) dx, \]
\[F_{L_f} = \int_0^1 (\tau_r - \tau_f) dy, \]

(5.34)
(5.35)

where \(p_f, p_r, p_b, \) and \(p_t \) are values of pressure distribution on the front, rear, bottom and top surfaces of the square cylinder, respectively; and \(\tau_f, \tau_r, \tau_b, \) and \(\tau_t \) are values of shear stress acting on the front, rear, bottom and top surfaces of the square cylinder, respectively, as shown in Figure 5.4.
5.4 Numerical results and discussion

A grid independence study for flow past a square cylinder in a channel at Reynolds number of 40 is conducted. The length of recirculation zone L_r and drag coefficient C_D for various grid sizes are presented in Table 5.7. The variations of L_r and C_D with respect to the number of nodes are described in Figures 5.5 and 5.6. It can be seen that the numerical results are convergent with increasing grid density. The flow parameters L_r and C_D for different Reynolds numbers ($Re \leq 40$) using a grid of 571×351 are provided in Table 5.8. The present numerical results are in good agreement with the published results of other authors. Contours of stream function and vorticity of the flow field around the square cylinder for small Reynolds numbers are given in Figure 5.7. It appears that the flow separation occurs at the trailing edges of the cylinder and a closed steady recirculation region containing two symmetric vortices forms behind the cylinder. The size of the recirculation region increases with increasing Reynolds number.
Table 5.7: Steady flow past a square cylinder in a channel: grid convergence study of recirculation length L_r and drag coefficient C_D for $Re = 40$.

<table>
<thead>
<tr>
<th>Grid</th>
<th>L_r</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>173×121</td>
<td>2.37</td>
<td>1.10</td>
</tr>
<tr>
<td>211×151</td>
<td>2.29</td>
<td>1.31</td>
</tr>
<tr>
<td>281×201</td>
<td>2.26</td>
<td>1.49</td>
</tr>
<tr>
<td>351×251</td>
<td>2.25</td>
<td>1.57</td>
</tr>
<tr>
<td>469×301</td>
<td>2.25</td>
<td>1.75</td>
</tr>
<tr>
<td>493×305</td>
<td>2.25</td>
<td>1.79</td>
</tr>
<tr>
<td>557×341</td>
<td>2.27</td>
<td>1.88</td>
</tr>
<tr>
<td>571×351</td>
<td>2.27</td>
<td>1.89</td>
</tr>
<tr>
<td>599×351</td>
<td>2.27</td>
<td>1.91</td>
</tr>
<tr>
<td>645×367</td>
<td>2.27</td>
<td>1.92</td>
</tr>
<tr>
<td>717×377</td>
<td>2.27</td>
<td>1.91</td>
</tr>
<tr>
<td>Breuer et al. (2000)</td>
<td>2.15</td>
<td>1.70</td>
</tr>
<tr>
<td>Gupta et al. (2003)</td>
<td>1.90</td>
<td>1.86</td>
</tr>
<tr>
<td>Dhiman et al. (2005)</td>
<td>2.17</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Table 5.8: Steady flow past a square cylinder in a channel: comparison of recirculation length L_r and drag coefficient C_D, using a grid of 571×351.

<table>
<thead>
<tr>
<th>Re</th>
<th>Source</th>
<th>L_{sep}</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Breuer et al. (2000)</td>
<td>0.49</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>Gupta et al. (2003)</td>
<td>0.40</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td>Dhiman et al. (2005)</td>
<td>0.49</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>0.48</td>
<td>3.73</td>
</tr>
<tr>
<td>20</td>
<td>Breuer et al. (2000)</td>
<td>1.04</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>Gupta et al. (2003)</td>
<td>0.90</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td>Dhiman et al. (2005)</td>
<td>1.05</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>1.06</td>
<td>2.64</td>
</tr>
<tr>
<td>30</td>
<td>Breuer et al. (2000)</td>
<td>1.60</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>Gupta et al. (2003)</td>
<td>1.40</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>Dhiman et al. (2005)</td>
<td>1.62</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>1.66</td>
<td>2.15</td>
</tr>
<tr>
<td>40</td>
<td>Breuer et al. (2000)</td>
<td>2.15</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>Gupta et al. (2003)</td>
<td>1.90</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>Dhiman et al. (2005)</td>
<td>2.17</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>2.27</td>
<td>1.89</td>
</tr>
</tbody>
</table>
5.4 Numerical results and discussion

Figure 5.5: Steady flow past a square cylinder in a channel: grid convergence study of recirculation length L_r for $Re = 40$.

Figure 5.6: Steady flow past a square cylinder in a channel: grid convergence study of drag coefficient C_D for $Re = 40$.
5.4 Numerical results and discussion

Figure 5.7: Steady flow past a square cylinder in a channel: contours of stream function for different Reynolds numbers, using a grid of 571×351.
5.4 Numerical results and discussion

Unsteady case

When the Reynolds number reaches a certain critical value, flow past a square cylinder in a channel becomes unsteady. The critical Reynolds number is a function of the blockage ratio defined in Figure 5.2. Here we do not attempt to search for these critical Reynolds numbers and simply investigate the flow for several values of β_0 (1/2, 1/4, and 1/8) and Reynolds numbers (60 \leq Re \leq 160). The Strouhal number is calculated based on the frequency of the vortex shedding f, the cylinder length D and the maximum inlet velocity u_{max} as follows.

$$St = \frac{fD}{u_{\text{max}}}. \quad (5.36)$$

Time-averaged drag coefficient C_{Dm} is defined by

$$C_{Dm} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} C_D dt, \quad (5.37)$$

where $t_2 - t_1$ is the period of the vortex shedding.

Figures 5.8 and 5.9 respectively present variations of Strouhal number St and time-averaged drag coefficient C_{Dm} with respect to Reynolds number for the case of blockage ratio of 1/8 and using different grids of 547 \times 331, 571 \times 351 and 645 \times 367. The obtained numerical results are compared with the results of FVM (Breuer et al., 2000) both using a non-uniform grid of 560 \times 340, lattice-Boltzmann automata (LBA) method (Breuer et al., 2000) using a uniform grid of 2000 \times 320, space-time adaptive method (STAM) (Berrone and Marro, 2009) and control volume finite element method (CVFEM) (Bouaziz et al., 2010) using a non-uniform grid of 249 \times 197. It can be seen that the present numerical results at three different grids are slightly different and in good agreement with the results of other methods. Figure 5.10 shows variations of drag and lift co-
efficients with respect to time t for the case of $Re = 90$, $\beta_0 = 1/8$ and using a grid of 571×351. It can be seen that those coefficients vary periodically after a certain time. The contours of stream function and vorticity for different Reynolds numbers ($Re = 40, 60, 90$ and 160) and $\beta_0 = 1/8$ are depicted in Figures 5.11 and 5.12, respectively. The well-known von Karman vortices generate behind the cylinder periodically when a critical Reynolds number ($Re \approx 60$) is exceeded.

Table 5.9 presents Strouhal number St and time-averaged drag coefficient C_{Dm} for several Reynolds numbers ($60 \leq Re \leq 160$) and blockage ratios ($\beta_0 = 1/2, 1/4$ and $1/8$). It is noted that in the cases of $\beta_0 = 1/2$ and $1/4$, the flow is still steady for $Re = 60$ and 80. The influences of Reynolds number on the Strouhal number and time-averaged drag coefficient for blockage ratios ($\beta_0 = 1/2$ and $1/4$) are described in Figures 5.13 and 5.14, respectively. It can be seen that Reynolds number has a very weak influence on the Strouhal number for those cases, and the time-averaged drag coefficient decreases with increasing Reynolds number up to 160. Figures 5.15 and 5.16 present the contours of stream function and vorticity of flow field around the square cylinder in a channel with blockage ratio of $1/4$, while the corresponding contours for the case of blockage ratio of $1/2$ are given in Figures 5.17 and 5.18. Figures 5.11, 5.15 and 5.17 indicate that the critical Reynolds number (at which the flow becomes unsteady) increases with increasing blockage ratio. For example, at $Re = 60$, the flow becomes unsteady in the case of $\beta_0 = 1/8$, but is still steady in the case of $\beta_0 = 1/4$. At $Re = 100$, the flow becomes unsteady in the case of $\beta_0 = 1/4$, but remains nearly steady in the case of $\beta_0 = 1/2$. The numerical results obtained are in good agreement with those of Sahu et al. (2010) who used the semi-explicit FEM.
5.4 Numerical results and discussion

Figure 5.8: Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): variation of Strouhal number St with respect to Reynolds number Re, using different grids of 547×331, 571×351 and 645×367; FVM (Breuer et al., 2000) using a non-uniform grid of 560×340; LBA (Breuer et al., 2000) using a uniform grid of 2000×320; STAM (Berrone and Marro, 2009); CVFEM (Bouaziz et al., 2010) using a non-uniform grid of 249×197.

Figure 5.9: Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): variation of time-averaged drag coefficient C_{Dm} with respect to Reynolds number Re, using different grids of 547×331, 571×351 and 645×367; FVM (Breuer et al., 2000) using a non-uniform grid of 560×340; LBA (Breuer et al., 2000) using a uniform grid of 2000×320; STAM (Berrone and Marro, 2009); CVFEM (Bouaziz et al., 2010) using a non-uniform grid of 249×197.
Figure 5.10: Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): variation of drag coefficient C_D and lift coefficient C_L with respect to time t for the case of $Re = 90$, using a grid of 571×351.

$\beta_0 = 1/8$
Figure 5.11: Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): Contours of stream function for different Reynolds numbers, using a grid of 645×367.
Figure 5.12: Unsteady flow past a square cylinder in a channel (blockage ratio $\beta_0 = 1/8$): Contours of vorticity for different Reynolds numbers, using a grid of 645×367.
Table 5.9: Unsteady flow past a square cylinder in a channel: Strouhal number St and time-averaged drag coefficient C_{Dm} for different blockage ratios $\beta_0 = 1/2, 1/4$ and $1/8$, using grids of 645×191, 645×271 and 645×367, respectively. Note that in the case of $\beta_0 = 1/2, 1/4$, the flow is still steady for $Re = 60, 80$

<table>
<thead>
<tr>
<th>Re</th>
<th>$\beta_0 = 1/2$</th>
<th>$\beta_0 = 1/4$</th>
<th>$\beta_0 = 1/8$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St</td>
<td>C_{Dm}</td>
<td>St</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>7.522</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>6.237</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>0.344</td>
<td>5.396</td>
<td>0.185</td>
</tr>
<tr>
<td>120</td>
<td>0.349</td>
<td>4.773</td>
<td>0.192</td>
</tr>
<tr>
<td>140</td>
<td>0.352</td>
<td>4.269</td>
<td>0.196</td>
</tr>
<tr>
<td>160</td>
<td>0.352</td>
<td>3.850</td>
<td>0.197</td>
</tr>
</tbody>
</table>
5.4 Numerical results and discussion

Figure 5.13: Unsteady flow past a square cylinder in a channel: variation of time-averaged drag coefficient C_{Dm} with respect to Reynolds number Re for blockage ratios $\beta_0 = 1/2$ and $1/4$, using grids of 645×191 and 645×271, respectively;

Figure 5.14: Unsteady flow past a square cylinder in a channel: variation of time-averaged drag coefficient C_{Dm} with respect to Reynolds number Re for blockage ratios $\beta_0 = 1/2$ and $1/4$, using grids of 645×191 and 645×271, respectively;
5.4 Numerical results and discussion

Figure 5.15: Unsteady flow past a square cylinder in a channel: Contours of stream function for different Reynolds numbers ($\beta_0 = 1/4$, grid = 645×271).

Figure 5.16: Unsteady flow past a square cylinder in a channel: Contours of vorticity for different Reynolds numbers ($\beta_0 = 1/4$, grid = 645×271).
Figure 5.17: Unsteady flow past a square cylinder in a channel: Contours of stream function for different Reynolds numbers ($\beta_0 = 1/2$, grid = 645 × 191).

Figure 5.18: Unsteady flow past a square cylinder in a channel: Contours of vorticity for different Reynolds numbers ($\beta_0 = 1/2$, grid = 645 × 191).
5.4.3 Example 3: Unsteady flows past a circular cylinder

The unsteady flow past a circular cylinder at different Reynolds numbers \((Re = 80, 100 \text{ and } 200)\) is considered here, where \(Re = U_0D/\nu\), \(U_0\) is the far-field inlet velocity taken to be 1, \(D\) the diameter of the cylinder taken to be 1, \(\nu\) the kinematic viscosity. The same numerical procedure as in Example 2 is employed. The problem geometry and boundary conditions are described in Figure 5.19. Note that computational boundary conditions for vorticity are determined by Equations (5.9)-(5.13). The computational domain is decomposed into 25 subdomains as shown in Figure 5.20. A finer grid is generated in the subdomain containing the circular cylinder. The far-field flow is assumed to behave as a potential flow and the far-field stream function \(\psi^{\text{far}}\) can be defined by (Kim et al., 2007)

\[
\psi^{\text{far}} = U_0y \left(1 - \frac{D^2}{4(x^2 + y^2)} \right).
\]

(5.38)

The boundary conditions for stream function are given by

\[
\psi = \psi^{\text{far}}, \ \omega = 0, \quad \text{on } \Gamma_1, \Gamma_2, \Gamma_3 \tag{5.39}
\]

\[
\frac{\partial\psi}{\partial x} = 0, \quad \frac{\partial\omega}{\partial x} = 0, \quad \text{on } \Gamma_4 \tag{5.40}
\]

\[
\psi = \psi^{w}, \quad \frac{\partial\psi}{\partial n} = 0, \quad \text{on } \Gamma_w \tag{5.41}
\]

where \(n\) is the direction normal to the cylinder surface; \(\psi_w\) the unknown stream function value on the cylinder wall, \(\Gamma_w\); and the subscript \(w\) is used to denote quantities on \(\Gamma_w\). The value \(\psi_w\) varies with respect to time and can be determined by using a single-valued pressure condition (Lewis, 1979; Le-Cao et al., 2011).

Tables 5.10-5.12 respectively present Strouhal number, drag and lift coefficients for different Reynolds numbers. The present numerical results are in good agreement with the published results of other authors. Figure 5.21 presents
the variations of drag and lift coefficients with respect to time for $Re = 100$. The periodic variations of these coefficients are observed as time goes on. The contours of stream function and vorticity of the flow field around the circular cylinder at different Reynolds numbers are provided in Figures 5.22 and 5.23, respectively. With increasing Reynolds number, the vortex shedding frequency increases and the vortices become smaller.
5.4 Numerical results and discussion

Table 5.10: Unsteady flow past a circular cylinder: Strouhal number St for different Reynolds number $Re = 80, 100$ and 200.

<table>
<thead>
<tr>
<th>Source</th>
<th>$Re = 80$</th>
<th>$Re = 100$</th>
<th>$Re = 200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braza et al. (1986)</td>
<td>-</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Liu et al. (1998)</td>
<td>-</td>
<td>0.165</td>
<td>0.192</td>
</tr>
<tr>
<td>Ding et al. (2004)</td>
<td>-</td>
<td>0.164</td>
<td>0.196</td>
</tr>
<tr>
<td>Park et al. (1998)</td>
<td>0.152</td>
<td>0.165</td>
<td>-</td>
</tr>
<tr>
<td>Silva et al. (2003)</td>
<td>0.15</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>Present, 548×379</td>
<td>0.159</td>
<td>0.168</td>
<td>-</td>
</tr>
<tr>
<td>Present, 640×379</td>
<td>0.151</td>
<td>0.168</td>
<td>0.199</td>
</tr>
</tbody>
</table>

Table 5.11: Unsteady flow past a circular cylinder: Drag coefficient C_D for different Reynolds number $Re = 80, 100$ and 200.

<table>
<thead>
<tr>
<th>Source</th>
<th>$Re = 80$</th>
<th>$Re = 100$</th>
<th>$Re = 200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braza et al. (1986)</td>
<td>-</td>
<td>1.364 ± 0.015</td>
<td>1.40 ± 0.05</td>
</tr>
<tr>
<td>Liu et al. (1998)</td>
<td>-</td>
<td>1.350 ± 0.012</td>
<td>1.310 ± 0.049</td>
</tr>
<tr>
<td>Ding et al. (2004)</td>
<td>-</td>
<td>1.325 ± 0.008</td>
<td>1.327 ± 0.045</td>
</tr>
<tr>
<td>Park et al. (1998)</td>
<td>1.35</td>
<td>1.33</td>
<td>-</td>
</tr>
<tr>
<td>Silva et al. (2003)</td>
<td>1.4</td>
<td>1.39</td>
<td>-</td>
</tr>
<tr>
<td>Present, 548×379</td>
<td>1.364 ± 0.004</td>
<td>1.344 ± 0.012</td>
<td>-</td>
</tr>
<tr>
<td>Present, 640×379</td>
<td>1.365 ± 0.005</td>
<td>1.344 ± 0.012</td>
<td>1.295 ± 0.048</td>
</tr>
</tbody>
</table>

Table 5.12: Unsteady flow past a circular cylinder: Lift coefficient C_L for different Reynolds number $Re = 80, 100$ and 200.

<table>
<thead>
<tr>
<th>Source</th>
<th>$Re = 80$</th>
<th>$Re = 100$</th>
<th>$Re = 200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braza et al. (1986)</td>
<td>-</td>
<td>±0.25</td>
<td>±0.75</td>
</tr>
<tr>
<td>Liu et al. (1998)</td>
<td>-</td>
<td>±0.339</td>
<td>±0.69</td>
</tr>
<tr>
<td>Ding et al. (2004)</td>
<td>-</td>
<td>±0.28</td>
<td>±0.60</td>
</tr>
<tr>
<td>Park et al. (1998)</td>
<td>±0.245</td>
<td>±0.332</td>
<td>-</td>
</tr>
<tr>
<td>Silva et al. (2003)</td>
<td>±0.235</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Present, 548×379</td>
<td>±0.237</td>
<td>±0.344</td>
<td>-</td>
</tr>
<tr>
<td>Present, 640×379</td>
<td>±0.245</td>
<td>±0.341</td>
<td>±0.70</td>
</tr>
</tbody>
</table>
5.4 Numerical results and discussion

Figure 5.20: Unsteady flow past a circular cylinder: grid configuration.

Figure 5.21: Unsteady flow past a stationary cylinder: drag and lift coefficients C_D and C_L with respect to time for $Re = 100$, using a grid of 548×379.
5.4 Numerical results and discussion

Figure 5.22: Unsteady flow past a circular cylinder: contours of stream function for different Reynolds numbers $Re = 80$, 100 and 200, using grids of 548×379, 548×379 and 640×379, respectively.
Figure 5.23: Unsteady flow past a circular cylinder: contours of vorticity for different Reynolds numbers $Re = 80, 100$ and 200, using grids of 548×379, 548×379 and 640×379, respectively.
5.5 Concluding remarks

A new numerical procedure based on the local MLS-1D-IRBFN method is presented for time-dependent problems. The numerical results for Burgers’ equation indicate that the LMLS-1D-IRBFN approach yields the same level of accuracy as the 1D-IRBFN method, while the system matrix is more sparse than that of the 1D-IRBFN, which helps reduce the computational cost significantly. The LMLS-1D-IRBFN shape function possesses the Kronecker-\(\delta\) property which allows an exact imposition of the essential boundary condition. Cartesian grids are employed to discretise both regular and irregular problem domains. The combination of the present numerical procedure and a domain decomposition technique is successfully developed for simulating steady and unsteady flows past a square cylinder in a horizontal channel with different blockage ratios and unsteady flows past a circular cylinder. The influence of blockage ratio on the characteristics of flow past a square cylinder in a channel is investigated for a range of Reynolds numbers \((60 \leq Re \leq 160)\) and several blockage ratios \((\beta_0 = 1/2, 1/4 \text{ and } 1/8)\). The obtained numerical results indicate that (i) the critical Reynolds number (at which the flow becomes unsteady) increases with increasing blockage ratio; (ii) time-averaged drag coefficient decreases with increasing Reynolds number up to 160; and (iii) the Reynolds number has a very weak influence on the Strouhal number for the cases of \(\beta_0 = 1/2 \text{ and } 1/4\).
Chapter 6

A numerical procedure based on 1D-IRBFN and local MLS-1D-IRBFN methods for fluid-structure interaction analysis

In Chapter 2, the 1D-IRBFN method has been successfully developed for structural analysis of laminated composite plates. In Chapters 3-5, the local moving least square - one dimensional integrated radial basis function network (LMLS-1D-IRBFN) method has been developed and demonstrated with the solution of steady and unsteady fluid flow and natural convection problems where the applicability of the method in multiply-connected domains has been shown. In the present chapter, a new numerical procedure based on the 1D-IRBFN method and LMLS-1D-IRBFN approach is presented for solving fluid-structure interaction (FSI) problems. A combination of Chorin’s method and pseudo-time subiterative technique is presented for a transient solution of 2-D incompressible
viscous Navier-Stokes equations in terms of primitive variables. Fluid domains are discretised by using Cartesian grids. The fluid solver is first verified through a solution of mixed convection in a lid-driven cavity with a hot lid and a cold bottom wall. The structural solver is verified with an analytical solution of forced vibration of a beam. The Newmark's method is employed for the forced vibration analysis of the beam based on the Euler-Bernoulli theory. The FSI numerical procedure is then applied to simulate flows in a lid-driven open-cavity with a flexible bottom wall.

6.1 Introduction

Fluid-structure interaction (FSI) plays a central role in several engineering problems such as aircraft wing flutter (Dubcova et al., 2008), bridge flutter (Ge and Xiang, 2008), blood flows (Fernández et al., 2007), design of helicopter rotors (Xiong and Yu, 2007). Therefore, FSI analysis is the key for solving those kinds of problems. FSI is a challenge for numerical modelling. To handle FSI problems, one needs to consider the governing equations for fluid and structure, and geometrical compatibility and equilibrium conditions at the interfaces between fluid and structural domains. Some FSI behaviours can converge to a steady-state solution, others can be oscillatory or even unstable.

There are two main approaches for solving FSI problems, including monolithic methods (Rugonyi and Bathe, 2001; Heil, 2004; Liew et al., 2007) and partitioned methods (Farhat and Lesoinne, 1998; Piperno, 1997). Partitioned procedures are usually appropriate for weak interaction between the fluid and the structure while the monolithic procedure is chosen to be effective for solving FSI problems with a strong interaction. In the monolithic approach, the fluid and structural equations are solved simultaneously. This approach may lead to two drawbacks (i) an increase in the number of degrees of freedom (DOFs) and (ii) an ill-conditioned matrix of the coupled equation system. In the par-
tioned approach, the fluid and structural fields are solved separately and the solution variables are transferred at the interfaces of the fluid and structural domains. The major advantage of this approach is the flexibility to choose different solvers for each field. However, the approach introduces a time delay which results in non-physical energy dissipation (Farhat and Lesoinne, 1998). Piperno (1997) introduced coupling staggered procedures with a structural predictor for a transient solution of a supersonic panel flutter using dynamic mesh and finite volume methods (FVM) based on the arbitrary-Lagrangian-Eulerian (ALE) formulation. Their procedures do not satisfy continuity of the structural and fluid grid displacements/velocities at the moving interface, but allow an exact numerical exchange of momentum through the interface.

Recently, a problem of FSI in a lid-driven cavity with a flexible bottom has been studied by several researchers to verify their numerical procedures for the FSI analysis (Förster et al., 2007; Kütter and Wall, 2008; Bathe and Zhang, 2009; Al-Amiri and Khanafer, 2011). Förster et al. (2007) studied this FSI problem and investigated the influence of mass density ratio, structural stiffness, structural predictor and time step size on the instabilities of sequentially staggered FSI simulations where incompressible flows are considered. Bathe and Zhang (2009) presented a numerical procedure to adapt and repair the fluid mesh for solving this FSI problem using the ALE formulation. The fully adaptive solution of transient flow are too expensive and may lead to large computational errors during the time integration. Therefore, they first solved a steady flow in a lid-driven cavity at the maximum velocity of the lid to obtain an adaptive mesh. This mesh is then employed for the transient solution of the FSI system.

Al-Amiri and Khanafer (2011) investigated a steady laminar mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall using a finite element formulation based on the Gelerkin method of weighted residuals.

As an alternative to the ALE formulation, Eulerian formulations (e.g. Cartesian-based methods) can be used to describe the fluid motion in FSI and mov-
ing boundary problems. Udaykumar et al. (2001) presented a Cartesian grid method for computing fluid flows with complex immersed and moving boundaries. The flow is computed on a fixed Cartesian mesh and the solid boundaries are allowed to move freely through the mesh. The method significantly reduces the grid generation cost and has a great potential over the conventional body-fitted methods when solving problems with moving boundaries and complicated geometry. Šarler and Vertnik (2006) proposed an explicit local radial basis function collocation method for diffusion problems. The method appeared efficient, because it does not deal with a large system of equations like the original collocation multiquadric radial basis function method proposed by Kansa (1990b). Divo and Kassab (2007) developed a localized radial basis function meshless method (LCMM) for a solution of coupled viscous fluid flow and conjugate heat transfer problem. The LCMM was applied to simulate steady and unsteady blood flows in arterial bypass graft geometries (Zahab et al., 2009). Mai-Duy and Tanner (2007) presented a one-dimensional integrated radial basis function network (1D-IRBFN) collocation method for the solution of second- and fourth-order PDEs. Along grid lines, 1D-IRBF networks are constructed to satisfy the governing differential equations with boundary conditions in an exact manner. In the 1D-IRBFN method, the Cartesian grids are used to discretise both rectangular and non-rectangular problem domains. The 1D-IRBFN method is much more efficient than the original IRBFN method reported in Mai-Duy and Tran-Cong (2001a). Ngo-Cong et al. (2011) extended this method to investigate free vibration of composite laminated plates based on first-order shear deformation theory (Chapter 2). Ngo-Cong et al. (2012) proposed a local moving least square - one dimensional integrated radial basis function network method (LMLS-1D-IRBFN) for simulating 2-D incompressible viscous flows in terms of stream function and vorticity (Chapter 3). The method is based on the partition of unity framework to incorporate the moving least square and 1D-IRBFN techniques in an approach that produces a very sparse system matrix and offers as a high level of accuracy as that of the 1D-IRBFN.
The present chapter reports the development of a new numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods for solving FSI and moving boundary problems such as flows in a lid-driven open-cavity with a flexible bottom wall. The fluid flow is governed by 2-D incompressible viscous Navier-Stokes equations in terms of primitive variables and the motion of the bottom wall is described by using the Euler-Bernoulli theory. The present fluid solver is first verified through a benchmark solution of mixed convection in a lid-driven cavity with a hot moving lid and a cold stationary bottom wall. Torrance et al. (1972) first numerically studied this kind of problem and found that the interaction of the shear driven flow due to the lid motion and natural convection due to the buoyancy effect makes the flow behaviour complicated and different from those driven by the two effects separately. Iwatsu et al. (1993) studied mixed convection in a lid-driven cavity with a hot moving top wall and a cold stationary bottom wall using finite different method (FDM). Sharif (2007) investigated the mixed convection heat transfer in inclined cavities using the FVM with a second-order upwind differencing scheme to discretise convection terms and central differencing scheme to discretise diffusion terms. Recently, Cheng (2011) employed a fourth-order accurate compact form and pseudo time iteration methods for simulations of mixed convection in a 2-D lid-driven cavity using the stream function, vorticity and temperature formulation.

The present chapter is organised as follows. Section 6.2 briefly reproduces the 1D-IRBFN and local MLS-1D-IRBFN techniques. The governing equations for structure, 2-D incompressible viscous flows and FSI are presented in Section 6.3. Section 6.4 describes the discretisation of the governing equations, the details of determination of variable values at “freshly cleared” nodes (defined later in section 6.4.3) and a sequentially staggered algorithm for FSI analysis. Several numerical examples are investigated using the present numerical procedure in Section 6.5. Section 6.6 concludes the chapter.
6.2 1D-IRBFN and local MLS-1D-IRBFN methods

The domain of interest is discretised using a Cartesian grid, i.e. an array of straight lines that run parallel to the x- and y-axes. The dependent variable u and its derivatives on each grid line are approximated using 1D-IRBFN and local MLS-1D-IRBFN methods as described in the remainder of this section.

6.2.1 1D-IRBFN methods

The 1D-IRBFN methods (Mai-Duy and Tanner, 2007) including 1D-IRBFN-2 and 1D-IRBFN-4 schemes are briefly described here.

Second-order 1D-IRBFN (1D-IRBFN-2 scheme)

Consider an x-grid line, e.g. $[j]$, as shown in Figure 6.1. The variation of u along this line is sought in the IRBF form. The second-order derivative of u is decomposed into RBFs; the RBF network is then integrated once and twice to obtain the expressions for the first-order derivative of u and the solution u itself,

\[
\frac{\partial^2 u(x)}{\partial x^2} = \sum_{i=1}^{N_{[j]}} w^{(i)} G^{(i)}(x) = \sum_{i=1}^{N_{[j]}} w^{(i)} H^{(i)}_{[2]}(x), \tag{6.1}
\]

\[
\frac{\partial u(x)}{\partial x} = \sum_{i=1}^{N_{[j]}} w^{(i)} H^{(i)}_{[1]}(x) + c_1, \tag{6.2}
\]

\[
u(x) = \sum_{i=1}^{N_{[j]}} w^{(i)} H^{(i)}_{[0]}(x) + c_1 x + c_2, \tag{6.3}
\]
where \(N_{x}^{[j]} \) is the number of nodes on the grid line \([j]\); \(\{w^{[i]}\}_{j=1}^{N_{x}^{[j]}} \) RBF weights to be determined; \(\{G^{(i)}(x)\}_{i=1}^{N_{x}^{[j]}} = \{H^{(i)}(x)\}_{i=1}^{N_{x}^{[j]}} \) known RBFs; \(H^{(0)}(x) = \int H^{(1)}(x)dx; \) \(H^{(0)}(x) = \int H^{(1)}(x)dx; \) and \(c_1 \) and \(c_2 \) integration constants which are also unknown. An example of RBF, used in this work, is the multiquadrics \(G^{(i)}(x) = \sqrt{(x - x^{(i)})^2 + a^{(i)}^2}, \) \(a^{(i)} \) is the RBF width determined as \(a^{(k)} = \beta d^{(k)}, \) \(\beta \) a positive factor, and \(d^{(k)} \) the distance from the \(k^{th} \) center to its nearest neighbour.

![Figure 6.1: Cartesian grid discretisation.](image)

Fourth-order 1D-IRBFN (1D-IRBFN-4 scheme)

In the 1D-IRBFN-4 scheme, the fourth-order derivative is decomposed into RBFs. The RBF networks are then integrated to obtain the lower-order deriva-
6.2.1D-IRBFN and local MLS-1D-IRBFN methods

181
tives and the function itself,
\[
\frac{\partial^4 u(x)}{\partial x^4} = \sum_{i=1}^{N^i} w^{(i)} G^{(i)}(x) = \sum_{i=1}^{N^i} w^{(i)} H^{(i)}_{[4]}(x),
\]
(6.4)
\[
\frac{\partial^3 u(x)}{\partial x^3} = \sum_{i=1}^{N^i} w^{(i)} H^{(i)}_{[3]}(x) + c_1,
\]
(6.5)
\[
\frac{\partial^2 u(x)}{\partial x^2} = \sum_{i=1}^{N^i} w^{(i)} H^{(i)}_{[2]}(x) + c_1 x + c_2,
\]
(6.6)
\[
\frac{\partial u(x)}{\partial x} = \sum_{i=1}^{N^i} w^{(i)} H^{(i)}_{[1]}(x) + \frac{c_1}{2} x^2 + c_2 x + c_3,
\]
(6.7)
\[
u(x) = \sum_{i=1}^{N^i} w^{(i)} H^{(i)}_{[0]}(x) + \frac{c_1}{6} x^3 + \frac{c_2}{2} x^2 + c_3 x + c_4,
\]
(6.8)

where \(\{G^{(i)}(x)\}_{i=1}^{N^i} = \{H^{(i)}_{[4]}(x)\}_{i=1}^{N^i} \) are known RBFs; \(H^{(i)}_{[4]}(x) = \int H^{(i)}_{[4]}(x) dx; \)
\(H^{(i)}_{[3]}(x) = \int H^{(i)}_{[3]}(x) dx; \) \(H^{(i)}_{[2]}(x) = \int H^{(i)}_{[2]}(x) dx; \) \(H^{(i)}_{[1]}(x) = \int H^{(i)}_{[1]}(x) dx; \) and \(c_1, c_2, c_3 \) and \(c_4 \) integration constants which are also unknown.

6.2.2 Local moving least square - one dimensional integrated radial basis function network technique

A schematic outline of the LMLS-1D-IRBFN method is depicted in Figure 6.2.

The proposed method with 3-node support domains \((n = 3)\) and 5-node local 1D-IRBF networks \((n_s = 5)\) is presented here. On an \(x\)-grid line \([l]\), a global interpolant for the field variable at a grid point \(x_i\) is sought in the form

\[
u(x_i) = \sum_{j=1}^{n} \tilde{\phi}_j(x_i) u^{[j]}(x_i),
\]
(6.9)

where \(\{\tilde{\phi}_j\}_{j=1}^{n} \) is a set of the partition of unity functions constructed using MLS approximants (Liu, 2003); \(u^{[j]}(x_i) \) the nodal function value obtained from a local interpolant represented by a 1D-IRBF network \([j]\); \(n \) the number of nodes in
the support domain of x_i. In (6.9), MLS approximants are presently based on linear polynomials, which are defined in terms of 1 and x. It is noted that the MLS shape functions possess a so-called partition of unity properties as follows.

$$\sum_{j=1}^{n} \bar{\phi}_j(x) = 1. \tag{6.10}$$

Relevant derivatives of u at x_i can be obtained by differentiating (6.9)

$$\frac{\partial u(x_i)}{\partial x} = \sum_{j=1}^{n} \left(\frac{\partial \bar{\phi}_j(x_i)}{\partial x} u^{[j]}(x_i) + \bar{\phi}_j(x_i) \frac{\partial u^{[j]}(x_i)}{\partial x} \right), \tag{6.11}$$

$$\frac{\partial^2 u(x_i)}{\partial x^2} = \sum_{j=1}^{n} \left(\frac{\partial^2 \bar{\phi}_j(x_i)}{\partial x^2} u^{[j]}(x_i) + 2 \frac{\partial \bar{\phi}_j(x_i)}{\partial x} \frac{\partial u^{[j]}(x_i)}{\partial x} + \bar{\phi}_j(x_i) \frac{\partial^2 u^{[j]}(x_i)}{\partial x^2} \right), \tag{6.12}$$

where the values $u^{[j]}(x_i), \partial u^{[j]}(x_i)/\partial x$ and $\partial^2 u^{[j]}(x_i)/\partial x^2$ are calculated from 1D-IRBFN networks with n_s nodes.

![Figure 6.2: LMLS-1D-IRBFN scheme, □ a typical $[j]$ node.](image)

Full details of the LMLS-1D-IRBFN method can be found in Chapter 3.
6.3 Governing equations for fluid, structure and fluid-structure interaction

In this study, the FSI problem of flow in a lid-driven open-cavity with a flexible bottom wall (Förster et al., 2007; Bathe and Zhang, 2009) is considered. The bottom wall is modelled as a flexible beam using the Euler-Bernoulli beam theory. The fluid is described by the 2-D Navier-Stokes equations of incompressible viscous flow in terms of primitive variables.

6.3.1 Governing equations for forced vibration of a beam

The equation of motion for forced lateral vibration of a beam is based on the Euler-Bernoulli beam theory. This is a small-deflection theory and therefore some error will be incurred due to the neglect of the geometric non-linear term when the deflection is actually not small (Spoon and Grant, 2011). Our purpose here is to demonstrate our FSI analysis procedure and we will ignore the non-linear term here for the following reason. As shown later in the numerical results section, the actual maximum central deflection of the beam is about 14.71% of the beam length in the worst case of simply-supported boundary conditions and therefore the error is less than 10% (Spoon and Grant, 2011). In the case of clamped boundary conditions, the error is less than 1.3% since the maximum deflection is about 4.37% of the beam length. The equation of motion is given by (Rao, 2004)

\[EI \frac{\partial^4 w}{\partial x^4} + \rho_s A \frac{\partial^2 w}{\partial t^2} = f(x,t). \]

(6.13)

where \(w \) is the lateral deflection of the beam; \(t \) the time; \(E \) Young’s modulus; \(I \) the moment of inertia; \(A \) the cross-section area; \(\rho_s \) material density of the beam; and \(f(x,t) \) the external force per unit length of the beam. The boundary conditions for a simply supported or clamped end of a beam are described as
6.3 Governing equations for fluid, structure and fluid-structure interaction

follows.

- Simply supported case:

\[w = 0, \frac{\partial^2 w}{\partial x^2} = 0. \] (6.14)

- Clamped case:

\[w = 0, \frac{\partial w}{\partial x} = 0. \] (6.15)

6.3.2 Governing equations for 2-D incompressible viscous flows

The dimensional conservative form of the 2-D Navier-Stokes equations of incompressible viscous flow in terms of primitive variables is written as (Bathe and Zhang, 2009)

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \] (6.16)

\[\rho_f \frac{\partial u}{\partial t} + \rho_f \frac{\partial u^2}{\partial x} + \rho_f \frac{\partial uv}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \] (6.17)

\[\rho_f \frac{\partial v}{\partial t} + \rho_f \frac{\partial uv}{\partial x} + \rho_f \frac{\partial v^2}{\partial y} = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right), \] (6.18)

where \(u, v \) and \(p \) are horizontal velocity, vertical velocity and static pressure of the fluid, respectively; \(\rho_f \) the fluid density; and \(\mu \) the dynamic viscosity of the fluid.
6.3.3 Coupled equations for fluid-structure interaction

The geometrical compatibility conditions at the interface Γ between the fluid and structural domains are given by

\begin{align}
\mathbf{r}^\Gamma(t) = \mathbf{w}^\Gamma(t), \\
\dot{\mathbf{r}}^\Gamma(t) = \dot{\mathbf{w}}^\Gamma(t),
\end{align}

where \mathbf{r}^Γ and \mathbf{w}^Γ are the displacement vectors of the fluid and structure at the interface Γ, respectively; and $\dot{\mathbf{r}}^\Gamma$ and $\dot{\mathbf{w}}^\Gamma$ the velocity vectors of the fluid and structure at the interface Γ, respectively.

The equilibrium conditions can be described as follows.

\begin{equation}
\mathbf{h}^\Gamma_f(t) + \mathbf{h}^\Gamma_s(t) = \mathbf{0},
\end{equation}

where \mathbf{h}^Γ_f and \mathbf{h}^Γ_s are the fluid and structure traction vectors acting on the interface Γ, respectively.

6.4 Numerical procedures

In this section, the fractional-step projection method proposed by Chorin (1967) is described for solving the system of equations (6.16)-(6.18) with the use of 1D-IRBFN and LMLS-1D-IRBFN methods for spatial discretisation. The combination of the fractional-step projection method and the subiterative technique (Jameson, 1991; Melson et al., 1993) is presented to solve transient flow problems. The details of determination of variable values at “freshly cleared” nodes and a sequentially staggered algorithm for FSI analysis are also given here.
6.4 Numerical procedures

6.4.1 Fractional-step projection method (Chorin’s method)

- First step: Determine intermediate velocities \(u^* \) and \(v^* \) by ignoring the pressure term and incompressibility. Convection and diffusion terms are discretised explicitly at time level \((n)\) using the 1D-IRBFN method:

\[
\frac{\rho_f u^* - u^{(n)}}{\Delta t} = -\rho_f \frac{\partial (u^{(n)})^2}{\partial x} - \rho_f \frac{\partial u^{(n)} v^{(n)}}{\partial y} + \mu \left[\frac{\partial^2 u^{(n)}}{\partial x^2} + \frac{\partial^2 u^{(n)}}{\partial y^2} \right],
\]

(6.22)

\[
\frac{\rho_f v^* - v^{(n)}}{\Delta t} = -\rho_f \frac{\partial u^{(n)} v^{(n)}}{\partial x} - \rho_f \frac{\partial (v^{(n)})^2}{\partial y} + \mu \left[\frac{\partial^2 v^{(n)}}{\partial x^2} + \frac{\partial^2 v^{(n)}}{\partial y^2} \right].
\]

(6.23)

- Second step: Solve a Poisson equation for the pressure at time level \((n+1)\)

\[
\frac{\partial^2 p^{(n+1)}}{\partial x^2} + \frac{\partial^2 p^{(n+1)}}{\partial y^2} = \frac{\rho_f}{\Delta t} \left(\frac{\partial u^*}{\partial x} + \frac{\partial v^*}{\partial y} \right).
\]

(6.24)

It is noted that the LHS of (6.24) is discretised using the local MLS-1D-IRBFN method while the RHS is calculated with the 1D-IRBFN method. The process results in a sparse system of equations, which is then economically solved by the LU decomposition technique.

Neumann boundary conditions for pressure are given by

\[
\frac{\partial p^{(n+1)}}{\partial x} = \frac{\rho_f}{\Delta t} \frac{u^* - u^{(n)}}{\Delta t},
\]

(6.25)

\[
\frac{\partial p^{(n+1)}}{\partial y} = \frac{\rho_f}{\Delta t} \frac{v^* - v^{(n)}}{\Delta t}.
\]

(6.26)

Then, the velocities \(u^{(n+1)} \) and \(v^{(n+1)} \) are determined as

\[
u^{(n+1)} = v^* - \frac{\Delta t \partial p^{(n+1)}}{\rho_f \partial y}.
\]

(6.28)
For irregular domain problems, when determining the derivatives of pressure w.r.t. y on the curved boundary through Equation (6.26), the values of v^* on the curved boundary are unknown and can be determined by using a 1D-IRBFN extrapolant from the v^* values at the interior points as follows.

$$v^*(y_B) = \hat{H}_B \hat{H}_I^{-1} \hat{v}_I^*, \quad (6.29)$$

where y_B is the y-coordinate of node B on the curved boundary as shown in Figure 6.3;

$$\hat{v}_I^* = \left((v^*)^{(1)}, (v^*)^{(2)}, \ldots, (v^*)^{(N_y^{[m]})-1} \right)^T;$$

$$\hat{H}_B = \begin{bmatrix} H_{[0]}^{(1)}(y_B) & H_{[0]}^{(2)}(y_B) & \cdots & H_{[0]}^{(N_y^{[m]})-1}(y_B) \\ H_{[0]}^{(1)}(y_1) & H_{[0]}^{(2)}(y_1) & \cdots & H_{[0]}^{(N_y^{[m]})-1}(y_1) \\ H_{[0]}^{(1)}(y_2) & H_{[0]}^{(2)}(y_2) & \cdots & H_{[0]}^{(N_y^{[m]})-1}(y_2) \\ \vdots & \vdots & \cdots & \vdots \\ H_{[0]}^{(1)}(y_{N_y^{[m]}}-1) & H_{[0]}^{(2)}(y_{N_y^{[m]}}-1) & \cdots & H_{[0]}^{(N_y^{[m]})-1}(y_{N_y^{[m]}}-1) \end{bmatrix};$$

$$\hat{H}_I = \begin{bmatrix} y_1 & 1 \\ y_2 & 1 \\ \vdots & \vdots \\ y_{N_y^{[m]}}-1 & 1 \end{bmatrix}.$$

in which $N_y^{[m]}$ is the number of grid nodes on the y-grid line $[m]$ excluding the node on the curved boundary. The values of u^* on the curved boundary can be determined in a similar fashion.

Dirichlet boundary condition for pressure

Making use of Equation (6.3) for pressure values at interior points of an x-grid line $[j]$ and Equation (6.2) for first-order derivatives of pressure at the ends of that grid line results in

$$\begin{pmatrix} \hat{p}_I \\ \frac{\partial \hat{p}^{(1)}}{\partial x} \\ \frac{\partial \hat{p}^{(N_y^{[j]})}}{\partial x} \end{pmatrix} = \begin{bmatrix} \hat{H}_I \\ \hat{K} \end{bmatrix} \begin{pmatrix} \hat{w} \\ \hat{c} \end{pmatrix}, \quad (6.30)$$
Figure 6.3: Configuration to determine v^* at nodes on a curved boundary.

or

$$
\begin{pmatrix}
\hat{w} \\
\hat{c}
\end{pmatrix} = \left[\hat{H}_I \right]^{-1} \begin{pmatrix}
\hat{p}_I \\
\frac{\partial p^{(1)}}{\partial x} \\
\frac{\partial p^{(N_2^{|j|}-1)}}{\partial x}
\end{pmatrix},
$$

(6.31)

where

$$
\hat{p}_I = \left(p^{(2)}, p^{(3)}, \ldots, p^{(N_2^{|j|}-1)} \right)^T;
$$

$$
\hat{H}_I = \begin{bmatrix}
H^{(1)}_{[0]}(x_2) & H^{(2)}_{[0]}(x_2) & \cdots & H^{(N_2^{|j|})}_{[0]}(x_2) & x_2 & 1 \\
H^{(1)}_{[0]}(x_3) & H^{(2)}_{[0]}(x_3) & \cdots & H^{(N_2^{|j|})}_{[0]}(x_3) & x_3 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
H^{(1)}_{[0]}(x_{N_2^{|j|}-1}) & H^{(2)}_{[0]}(x_{N_2^{|j|}-1}) & \cdots & H^{(N_2^{|j|})}_{[0]}(x_{N_2^{|j|}-1}) & x_{N_2^{|j|}-1} & 1
\end{bmatrix};
$$

$$
\hat{K} = \begin{bmatrix}
H^{(1)}_{[1]}(x_1) & H^{(2)}_{[1]}(x_1) & \cdots & H^{(N_2^{|j|})}_{[1]}(x_1) & 1 & 0 \\
H^{(1)}_{[1]}(x_{N_2^{|j|}}) & H^{(2)}_{[1]}(x_{N_2^{|j|}}) & \cdots & H^{(N_2^{|j|})}_{[1]}(x_{N_2^{|j|}}) & 1 & 0
\end{bmatrix};
$$
and $\partial p^{(1)}/\partial x$ and $\partial p^{(N_{y}|j|)}/\partial x$ are calculated through Equation (6.25). From Equation (6.3), pressure values at the ends of the x-grid line $[j]$ can be defined by

$$
\begin{pmatrix}
p^{(1)} \\
p^{(N_{y}|j|)}
\end{pmatrix} = \hat{H}_B \begin{pmatrix}
\hat{w} \\
\hat{c}
\end{pmatrix},
$$

(6.32)

where

$$
\hat{H}_B = \begin{bmatrix}
H^{(1)}_{[0]}(x_1) & H^{(2)}_{[0]}(x_1) & \ldots & H^{(N_{y}|j|)}_{[0]}(x_1) & x_1 & 1 \\
H^{(1)}_{[0]}(x_{N_{y}|j|}) & H^{(2)}_{[0]}(x_{N_{y}|j|}) & \ldots & H^{(N_{y}|j|)}_{[0]}(x_{N_{y}|j|}) & x_{N_{y}|j|} & 1
\end{bmatrix}.
$$

By substituting Equation (6.31) into Equation (6.32), the boundary pressure values at both ends of the grid line $[j]$ are expressed in terms of the values of pressure at interior points and derivatives of pressure at both ends of the grid line $[j]$ as follows.

$$
\begin{pmatrix}
p^{(1)} \\
p^{(N_{y}|j|)}
\end{pmatrix} = \hat{H}_B \begin{bmatrix}
\hat{H}_I \\
\hat{K}
\end{bmatrix}^{-1} \begin{pmatrix}
\hat{p}_I \\
\frac{\partial p^{(1)}}{\partial x} \\
\frac{\partial p^{(N_{y}|j|)}}{\partial x}
\end{pmatrix}.
$$

(6.33)

The boundary pressure values at both ends of y-grid lines can be determined in a similar manner.

6.4.2 Combination of fractional-step projection method and subiterative technique

In the fractional-step projection method, the RHS of Equations (6.22) and (6.23) are explicitly calculated at time level (n). This scheme has severe stability-restricted time-step limitations which leads to a high computational cost when solving moving boundary problems. Jameson (1991) and Melson et al. (1993) presented subiterative techniques within the context of a multigrid methodology.
to allow a large physical time step with the use of an explicit code. Rumsey et al. (1996) combined the subiterative technique with an explicit central-difference code and an implicit upwind code for solving unsteady Navier-Stokes equations. The combination of the fractional-step projection method and the subiterative technique are now presented here. The temporal terms of Equations (6.17) and (6.18) are discretised using the backward Euler scheme while the convection and diffusion terms are treated implicitly, which results in

\[
\frac{\rho f u^{(n+1)} - u^{(n)}}{\Delta t} = -\rho f \frac{\partial (u^{(n+1)})^2}{\partial x} - \rho f \frac{\partial u^{(n+1)} v^{(n+1)}}{\partial y} - \frac{\partial p^{(n+1)}}{\partial x} + \mu \left[\frac{\partial^2 u^{(n+1)}}{\partial x^2} + \frac{\partial^2 u^{(n+1)}}{\partial y^2} \right],
\]

(6.34)

\[
\frac{\rho f v^{(n+1)} - v^{(n)}}{\Delta t} = -\rho f \frac{\partial u^{(n+1)} v^{(n+1)}}{\partial x} - \frac{\partial (v^{(n+1)})^2}{\partial y} - \frac{\partial p^{(n+1)}}{\partial y} + \mu \left[\frac{\partial^2 v^{(n+1)}}{\partial x^2} + \frac{\partial^2 v^{(n+1)}}{\partial y^2} \right].
\]

(6.35)

Pseudo-time derivative terms are added into Equations (6.34) and (6.35) as

\[
\frac{\rho f u^{(n+1)} - u^{(n)}}{\Delta t} + \rho f \frac{\partial u}{\partial \tau} = -\rho f \frac{\partial (u^{(n+1)})^2}{\partial x} - \rho f \frac{\partial u^{(n+1)} v^{(n+1)}}{\partial y} - \frac{\partial p^{(n+1)}}{\partial x} + \mu \left[\frac{\partial^2 u^{(n+1)}}{\partial x^2} + \frac{\partial^2 u^{(n+1)}}{\partial y^2} \right],
\]

(6.36)

\[
\frac{\rho f v^{(n+1)} - v^{(n)}}{\Delta t} + \rho f \frac{\partial v}{\partial \tau} = -\rho f \frac{\partial u^{(n+1)} v^{(n+1)}}{\partial x} - \frac{\partial (v^{(n+1)})^2}{\partial y} - \frac{\partial p^{(n+1)}}{\partial y} + \mu \left[\frac{\partial^2 v^{(n+1)}}{\partial x^2} + \frac{\partial^2 v^{(n+1)}}{\partial y^2} \right],
\]

(6.37)

where \(\tau\) is the pseudo time and \(t\) the physical time. The additional terms \(\partial u / \partial \tau\) and \(\partial u / \partial \tau\) are designed in such a way that they vanish when the values of \(u\) and \(v\) approach their correct values at time level \((n + 1)\) as follows (\(k\) is a
6.4 Numerical procedures

\[\rho f \frac{u^{(n+1)} - u^{(n)}}{\Delta t} + \rho f \frac{u^{(n+1,k+1)} - u^{(n+1,k)}}{\Delta \tau} = -\rho f \frac{\partial u^{(n+1,k)}}{\partial x} - \rho f \frac{\partial u^{(n+1,k)} u^{(n+1,k)}}{\partial y} + \mu \left[\frac{\partial^2 u^{(n+1,k)}}{\partial x^2} + \frac{\partial^2 u^{(n+1,k)}}{\partial y^2} \right], \]
\[(6.38) \]

\[\rho f \frac{v^{(n+1)} - v^{(n)}}{\Delta t} + \rho f \frac{v^{(n+1,k+1)} - v^{(n+1,k)}}{\Delta \tau} = -\rho f \frac{\partial v^{(n+1,k)}}{\partial x} - \rho f \frac{\partial v^{(n+1,k)} v^{(n+1,k)}}{\partial y} + \mu \left[\frac{\partial^2 v^{(n+1,k)}}{\partial x^2} + \frac{\partial^2 v^{(n+1,k)}}{\partial y^2} \right], \]
\[(6.39) \]

- First step: Determine intermediate velocities \(u^* \) and \(v^* \) by the following equations. The convection and diffusion terms are explicitly calculated at pseudo-time level \((k) \) using the 1D-IRBFN method.

\[\rho f \frac{u^* - u^{(n+1,k)}}{\Delta \tau} = -\rho f \frac{\partial u^{(n+1,k)}}{\partial x} - \rho f \frac{\partial u^{(n+1,k)} u^{(n+1,k)}}{\partial y} + \mu \left[\frac{\partial^2 u^{(n+1,k)}}{\partial x^2} + \frac{\partial^2 u^{(n+1,k)}}{\partial y^2} \right], \]
\[(6.40) \]

\[\rho f \frac{v^* - v^{(n+1,k)}}{\Delta \tau} = -\rho f \frac{\partial v^{(n+1,k)}}{\partial x} - \rho f \frac{\partial v^{(n+1,k)} v^{(n+1,k)}}{\partial y} + \mu \left[\frac{\partial^2 v^{(n+1,k)}}{\partial x^2} + \frac{\partial^2 v^{(n+1,k)}}{\partial y^2} \right]. \]
\[(6.41) \]

- Second step: Solve a Poisson equation for the pressure \(p^{(n+1,k+1)} \)

\[\frac{\partial^2 p^{(n+1,k+1)}}{\partial x^2} + \frac{\partial^2 p^{(n+1,k+1)}}{\partial y^2} = \frac{\rho f}{\Delta \tau} \left(\frac{\partial u^*}{\partial x} + \frac{\partial v^*}{\partial y} \right), \]
\[(6.42) \]

The LHS of (6.42) is discretised using the local MLS-1D-IRBFN method while the RHS is calculated with the 1D-IRBFN method. Neumann boundary conditions for pressure are given by

\[\frac{\partial p^{(n+1,k+1)}}{\partial x} = -\rho f \frac{u^{(n+1,k)} - u^{(n)}}{\Delta t} - \rho f \frac{u^{(n+1,k)} - u^*}{\Delta \tau}, \]
\[(6.43) \]

\[\frac{\partial p^{(n+1,k+1)}}{\partial y} = -\rho f \frac{v^{(n+1,k)} - v^{(n)}}{\Delta t} - \rho f \frac{v^{(n+1,k)} - v^*}{\Delta \tau}. \]
\[(6.44) \]
Then, velocities \(u^{(n+1,k+1)} \) and \(v^{(n+1,k+1)} \) are determined as follows.

\[
u^{(n+1,k+1)} = k_t \left(-\frac{1}{\rho_f} \frac{\partial p^{(n+1,k+1)}}{\partial x} + \frac{u^{(n)}}{\Delta t} + \frac{u^*}{\Delta \tau} \right), \tag{6.45}
\]

\[
v^{(n+1,k+1)} = k_t \left(-\frac{1}{\rho_f} \frac{\partial p^{(n+1,k+1)}}{\partial y} + \frac{v^{(n)}}{\Delta t} + \frac{v^*}{\Delta \tau} \right), \tag{6.46}
\]

where \(k_t = \frac{\Delta t \Delta \tau}{\Delta t + \Delta \tau} \).

- Third step: Check convergence criterion for \(u, v \) and \(p \)

\[
CM_u = \sqrt{\frac{\sum_{i=1}^{N_{ip}} (u_i^{(n+1,k+1)} - u_i^{(n+1,k)})^2}{\sum_{i=1}^{N_{ip}} (u_i^{(n+1,k+1)})^2}} < TOL, \tag{6.47}
\]

\[
CM_v = \sqrt{\frac{\sum_{i=1}^{N_{ip}} (v_i^{(n+1,k+1)} - v_i^{(n+1,k)})^2}{\sum_{i=1}^{N_{ip}} (v_i^{(n+1,k+1)})^2}} < TOL, \tag{6.48}
\]

\[
CM_p = \sqrt{\frac{\sum_{i=1}^{N_{ip}} (p_i^{(n+1,k+1)} - p_i^{(n+1,k)})^2}{\sum_{i=1}^{N_{ip}} (p_i^{(n+1,k+1)})^2}} < TOL, \tag{6.49}
\]

where \(TOL \) is a given tolerance and presently set to be \(10^{-7} \); and \(N_{ip} \) the number of interior points of the fluid domain. If not converged, return to the first step. Otherwise, assign \(u^{(n+1)} = u^{(n+1,k+1)} \), \(v^{(n+1)} = v^{(n+1,k+1)} \) and \(p^{(n+1)} = p^{(n+1,k+1)} \), then advance the physical time \(t \).

6.4.3 Determine variable values at “freshly cleared” nodes

“Freshly cleared” nodes are the nodes that are not inside the fluid domain at time level \(n \), but emerge into the fluid domain at the next time level \(n + 1 \). We need to have a “guess” value at these nodes, i.e. at pseudo-time level \(k = 0 \).
associated with the real time level \((n + 1)\). For this purpose, the technique presented by Udaykumar et al. (2001) to determine values at the “freshly cleared” nodes is employed here. As shown in Figure 6.4, the values at the “freshly cleared” nodes (e.g., a typical node \(A\)) are interpolated from the information at two interior nodes (nodes \(C\) and \(D\)), and one node on the boundary (node \(B\)) through the following interpolant.

\[
u^I(y) = a_0 + a_1 y + a_2 y^2,
\]

where \(a_0\), \(a_1\) and \(a_2\) are coefficients to be determined through the variable values and coordinates of nodes \(B, C\) and \(D\).

![Figure 6.4: Configuration to determine initial values at "freshly cleared" nodes.](image)

6.4.4 Sequential staggered fluid-structure interaction algorithm

The sequentially staggered algorithm (Piperno, 1997; Förster et al., 2007) is used in the present study and described as follows.

- Step 1: At the initial time \((t = 0s)\), set the displacement \((\mathbf{w})\) and velocity \((\dot{\mathbf{w}})\) of the bottom wall to be zero.
6.4 Numerical procedures

- Step 2: Calculate a predictor of the structural interface displacement at the new time level \((w_p^{(n+1)})\) using one of the following two approaches (Piperno, 1997; Förster et al., 2007).

 - Approach 1: Zeroth order accurate predictor
 \[
 w_p^{(n+1)} = w^{(n)}.
 \]
 \(6.51\)

 - Approach 2: First order accurate predictor
 \[
 w_p^{(n+1)} = w^{(n)} + \Delta t \dot{w}.
 \]
 \(6.52\)

Then determine the grid-node system for fluid analysis based on \(w_p^{(n+1)}\).

- Step 3: Solve the fluid problem to obtain pressure distribution \((p^\Gamma)\) on the bottom wall with the use of \(\dot{w}\) as a Dirichlet boundary condition for the vertical velocity \((v)\) of fluid field.

- Step 4: Solve the structural problem for a new displacement \((w)\) and velocity \((\dot{w})\) of the bottom wall with consideration of the fluid load \(p^\Gamma\) (the effect of viscous stress on the displacement of the bottom wall is much smaller than that of the pressure stress and hence neglected here). In the present study, the displacements are restricted to be small, thus there is no distinction between the material coordinates and spatial coordinates.

- Step 5: Advance physical time from level \((n)\) to \((n + 1)\) and return to Step 2.

Steps 2-5 are repeated until a stable FSI solution is found. The flowchart of the FSI analysis procedure is described in detail as shown in Figure 6.5.
6.4 Numerical procedures

Figure 6.5: Flowchart of the FSI analysis procedure.

Start

At \(t = 0 (n=0) \), set \(w = 0, \dot{w} = 0 \)

1. Calculate \(w_i^{(n+1)} \) using Equation (51) or (52)
2. Determine fluid grid nodes based on \(w_i^{(n+1)} \)
3. Determine "guess" values \(u_i^{(n+1,0)}, v_i^{(n+1,0)}, p_i^{(n+1,0)} \) based on \(u, v, p \) and Equation (50), \(k=0 \)
4. Pseudo-time \(\tau = \tau^{(0)} + \Delta \tau \)

Fluid solver

5. Determine \(u_i^{(n)}, v_i^{(n)} \) using Equations (40-41)
6. Determine \(\frac{\partial p_i^{(n+1,0)}}{\partial x}, \frac{\partial p_i^{(n+1,0)}}{\partial y} \) using Equations (43-44)
7. Determine Dirichlet boundary condition for \(p \) (including \(p_f \)) using Equations (30-33)
8. Solve Equation (42) to obtain \(p_i^{(n+1,0)} \)
9. Calculate \(u_i^{(n+1,2)} \) and \(v_i^{(n+1,2)} \) using Equations (45-46)
10. Check convergence criterion for \(u_i^{(n)}, v_i^{(n)} \) and \(p_i^{(n)} \) through (47-49)

Not converged

- Obtain \(u_i^{(n+1)}, v_i^{(n+1)}, p_i^{(n+1)} \) and \(p_f^{(n+1)} \)

Converged

11. Solve Equation (13) to obtain \(w_i^{(n+1)} \) and \(\dot{w}_i^{(n+1)} \)
12. Check \(t < T_{end} \)

Yes

End

No
6.5 Numerical results and discussion

Several examples are considered here to study the performance of the present numerical procedure. The examples are chosen to illustrate various steps of analysis for fluid flow, structural response and ultimately the response in a fluid-structure interaction problem. The domains of interest are discretised using uniform Cartesian grids. By using the LMLS-1D-IRBFN method to discretise the LHS of governing equations and the LU decomposition technique to solve the resultant sparse system of simultaneous equations, the computational cost is reduced.

6.5.1 Example 1: Mixed convection in a lid-driven cavity

The fluid solver is first verified through a solution of mixed convection in a lid-driven cavity with a hot moving lid and a cold stationary bottom wall. The problem geometry and boundary conditions are described in Figure 6.6. With the Boussinesq approximation, the dimensionless form of 2-D incompressible Navier-Stokes equations in terms of primitive variables and the energy equation governing the mixed convection in the cavity are written as follows (Iwatsu et al., 1993).

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0, \quad (6.53)
\]
\[
\frac{\partial U}{\partial t} + \frac{\partial U^2}{\partial X} + \frac{\partial UV}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{1}{Re} \left[\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right], \quad (6.54)
\]
\[
\frac{\partial V}{\partial t} + \frac{\partial UV}{\partial X} + \frac{\partial V^2}{\partial Y} = -\frac{\partial P}{\partial Y} + \frac{1}{Re} \left[\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right] + \frac{Gr}{Re^2} \theta, \quad (6.55)
\]
\[
\frac{\partial \theta}{\partial t} + \frac{\partial U \theta}{\partial X} + \frac{\partial V \theta}{\partial Y} = \frac{1}{Pr Re} \left[\frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right]. \quad (6.56)
\]
The variables in the equations above are nondimensionalised as

\[
t' = \frac{t}{H/U_0}, \quad X = \frac{x}{H}, \quad Y = \frac{y}{H},
\]

\[
U = \frac{u}{U_0}, \quad V = \frac{v}{U_0}, \quad P = \frac{p}{\rho_f U_0^2}, \quad \theta = \frac{T - T_C}{T_H - T_C},
\]

where \(H \) is the side length of the square cavity and \(U_0 \) velocity of the lid; \(T \) the temperature; and \(T_H \) and \(T_C \) the hot and cold temperatures, respectively.

In these equations, the nondimensionalised parameters are the Reynolds number \(Re = U_0 H/\nu \), the Prandtl number \(Pr = \nu/\alpha \) (\(Pr \) is set to be 0.71 presently) and the Grashof number \(Gr = Ra/Pr \), where \(Ra = g\beta(T_H - T_C)H^3/(\nu\alpha) \), \(\nu \) is the kinematic viscosity, \(\alpha \) the thermal diffusivity of the fluid, \(\beta \) the thermal expansion coefficient of the fluid and \(g \) the gravitational acceleration. The Richardson number is defined by \(Ri = Gr/Re^2 \) that measures the relative strength of the natural convection and forced convection. If \(Ri \ll 1 \) then the forced convection effect is dominant while if \(Ri \gg 1 \) then the natural convection effect is dominant.
6.5 Numerical results and discussion

Table 6.1: Mixed convection in a lid-driven cavity: grid convergence study and comparison of the average Nusselt number (\overline{Nu}) at the top wall for the Grashof number $Gr = 10^2$, and several Reynolds numbers $Re = 100, 400$ and 1000, using the 1D-IRBFN method (Approach 1) and the numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods (Approach 2).

<table>
<thead>
<tr>
<th>Grid</th>
<th>$Re = 100$</th>
<th>$Re = 400$</th>
<th>$Re = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41×41</td>
<td>1.98</td>
<td>4.13</td>
<td>6.77</td>
</tr>
<tr>
<td>61×61</td>
<td>1.99</td>
<td>4.08</td>
<td>6.87</td>
</tr>
<tr>
<td>81×81</td>
<td>2.00</td>
<td>4.05</td>
<td>6.80</td>
</tr>
<tr>
<td>101×101</td>
<td>2.00</td>
<td>4.04</td>
<td>6.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41×41</td>
<td>1.98</td>
<td>4.14</td>
<td>6.89</td>
</tr>
<tr>
<td>61×61</td>
<td>1.99</td>
<td>4.07</td>
<td>6.89</td>
</tr>
<tr>
<td>81×81</td>
<td>2.00</td>
<td>4.04</td>
<td>6.80</td>
</tr>
<tr>
<td>101×101</td>
<td>2.00</td>
<td>4.03</td>
<td>6.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwatsu et al. (1993) (FDM)</td>
<td>1.94</td>
<td>3.84</td>
<td>6.33</td>
</tr>
<tr>
<td>Sharif (2007) (FVM)</td>
<td>-</td>
<td>4.05</td>
<td>6.55</td>
</tr>
<tr>
<td>Cheng (2011) (FDM)</td>
<td>-</td>
<td>4.14</td>
<td>6.73</td>
</tr>
<tr>
<td>Al-Amiri and Khanafer (2011) (FEM)</td>
<td>2.02</td>
<td>4.05</td>
<td>6.45</td>
</tr>
</tbody>
</table>

Table 6.2: Mixed convection in a lid-driven cavity: grid convergence study and comparison of the average Nusselt number (\overline{Nu}) at the top wall for the Grashof number $Gr = 10^4$, and several Reynolds numbers $Re = 100, 400$ and 1000, using the 1D-IRBFN method (Approach 1) and the numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods (Approach 2).

<table>
<thead>
<tr>
<th>Grid</th>
<th>$Re = 100$</th>
<th>$Re = 400$</th>
<th>$Re = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41×41</td>
<td>1.36</td>
<td>3.87</td>
<td>6.72</td>
</tr>
<tr>
<td>61×61</td>
<td>1.37</td>
<td>3.83</td>
<td>6.82</td>
</tr>
<tr>
<td>81×81</td>
<td>1.37</td>
<td>3.80</td>
<td>6.75</td>
</tr>
<tr>
<td>101×101</td>
<td>1.38</td>
<td>3.79</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41×41</td>
<td>1.36</td>
<td>3.87</td>
<td>6.83</td>
</tr>
<tr>
<td>61×61</td>
<td>1.36</td>
<td>3.82</td>
<td>6.83</td>
</tr>
<tr>
<td>81×81</td>
<td>1.37</td>
<td>3.80</td>
<td>6.74</td>
</tr>
<tr>
<td>101×101</td>
<td>1.37</td>
<td>3.78</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwatsu et al. (1993) (FDM)</td>
<td>1.34</td>
<td>3.62</td>
<td>6.29</td>
</tr>
<tr>
<td>Sharif (2007) (FVM)</td>
<td>-</td>
<td>3.82</td>
<td>6.50</td>
</tr>
<tr>
<td>Cheng (2011) (FDM)</td>
<td>-</td>
<td>3.90</td>
<td>6.68</td>
</tr>
<tr>
<td>Al-Amiri and Khanafer (2011) (FEM)</td>
<td>1.38</td>
<td>3.76</td>
<td>6.56</td>
</tr>
</tbody>
</table>
6.5 Numerical results and discussion

Table 6.3: Mixed convection in a lid-driven cavity: grid convergence study and comparison of the average Nusselt number (\bar{Nu}) at the top wall for the Grashof number $Gr = 10^6$, and several Reynolds numbers $Re = 100, 400$ and 1000, using the 1D-IRBFN method (Approach 1) and the numerical procedure based on the 1D-IRBFN and local MLS-1D-IRBFN methods (Approach 2).

<table>
<thead>
<tr>
<th>Grid</th>
<th>$Re = 100$</th>
<th>$Re = 400$</th>
<th>$Re = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 \times 41</td>
<td>1.01</td>
<td>1.24</td>
<td>-</td>
</tr>
<tr>
<td>61 \times 61</td>
<td>1.01</td>
<td>1.21</td>
<td>1.88</td>
</tr>
<tr>
<td>81 \times 81</td>
<td>1.01</td>
<td>1.19</td>
<td>1.85</td>
</tr>
<tr>
<td>101 \times 101</td>
<td>1.01</td>
<td>1.18</td>
<td>1.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 \times 41</td>
</tr>
<tr>
<td>61 \times 61</td>
</tr>
<tr>
<td>81 \times 81</td>
</tr>
<tr>
<td>101 \times 101</td>
</tr>
</tbody>
</table>

Iwatsu et al. (1993) (FDM) 1.02 1.22 1.77
Sharif (2007) (FVM) - 1.17 1.81
Cheng (2011) (FDM) - 1.21 1.75
Al-Amiri and Khanafer (2011) (FEM) 1.02 1.17 1.72

The fractional-step projection method is applied to solve this problem with a time step $\Delta t' = 10^{-3}$. Tables 6.1-6.3 describe the grid convergence study of the average Nusselt number at the lid for several Grashof numbers $Gr = 10^2, 10^4$ and 10^6, and Reynolds numbers $Re = 100, 400$ and 1000. The LHS of pressure Poisson equation (6.24) is discretised by using 1D-IRBFN method (Approach 1) and LMLS-1D-IRBFN method (Approach 2). The system matrix of Approach 2 is much more sparse than that of Approach 1. The obtained numerical results showed that both approaches yield the same level of accuracy. Approach 2 is used for all other computations in the present study in order to save the computational cost. It can be seen that the converged numerical results are in good agreement with the published results of other authors. The isothermal lines and streamlines of the flow field inside the cavity at several Gr and Re numbers are depicted in Figures 6.7-6.9.

For the case $Gr = 10^2$ (Figure 6.7), the forced convection effect is dominant ($Ri \ll 1$), thus the streamlines of the flow are similar to those of the classical lid-driven cavity case (readers are referred to the work of Ghia et al. (1982) for
\textit{Re} = 100, 400 and 1000. At \textit{Re} = 1000, the temperature gradient is steep at the region close to the bottom wall and the lid, while the temperature gradient is small at the center region of the cavity. This indicates that the fluid is well mixed for the bulk of the cavity due to the flow circulation.

For the case \(Gr = 10^4\) (Figure 6.8), the natural convection effect is comparable to the forced convection effect at \(Re = 100\) (\(Ri = 1\)), while the forced convection effect is still dominant at \(Re = 400\) and 1000 (\(Ri \ll 1\)). Therefore, the flow pattern is quite different at \(Re = 100\), while remains similar at \(Re = 400\) and 1000, when compared to those of the above case (\(Gr = 10^2\)).

For the case \(Gr = 10^6\) (Figure 6.9), the natural convection effect is stronger than the forced convection effect. The flow patterns are very different from those of the classical lid-driven cavity case for several Reynolds numbers \(Re = 100, 400\) and 1000. It is observed that the heat conduction is almost uniform for the case \(Re = 100\) and mainly occurs at the bottom and middle regions of the cavity for the cases \(Re = 400\) and 1000.
Figure 6.7: Mixed convection in a lid-driven cavity: isothermal lines (left) and streamlines (right) of the flow at $Gr = 10^2$, and several Reynolds numbers $Re = 100, 400$ and 1000, using grids of 61×61, 81×81 and 101×101, respectively. The isothermal values are 25 uniformly distributed values in the range $[T_c, T_H]$. The contour values of stream function used here are taken to be the same as those in (Ghia et al., 1982).
Figure 6.8: Mixed convection in a lid-driven cavity: isothermal lines (left) and streamlines (right) of the flow at \(Gr = 10^4 \), and several Reynolds numbers \(Re = 100, 400 \) and 1000, using grids of \(61 \times 61 \), \(81 \times 81 \) and \(101 \times 101 \), respectively. The isothermal values are 25 uniformly distributed values in the range \([T_C, T_H]\). The contour values of stream function used here are taken to be the same as those in (Ghia et al., 1982).
6.5 Numerical results and discussion

Figure 6.9: Mixed convection in a lid-driven cavity: isothermal lines (left) and streamlines (right) of the flow at $Gr = 10^6$, and several Reynolds numbers $Re = 100$, 400 and 1000, using grids of 61×61, 81×81 and 101×101, respectively. The isothermal values are 25 uniformly distributed values in the range $[T_C, T_H]$. The contour values of stream function used here are taken to be the same as those in (Ghia et al., 1982).
6.5.2 Example 2: Flow in a lid-driven open-cavity with a prescribed bottom wall motion

The problem geometry and boundary conditions are described in Figure 6.10. The fluid properties and problem geometry used here are: fluid kinematic viscosity \(\nu = 0.01 m^2/s \), fluid density \(\rho_f = 1.0 kg/m^3 \), the side length of the square cavity \(H = 1m \) and the height of inlet and outlet \(h = 0.1m \). The bottom wall motion is given as: \(w = w_0 \cos (\omega_f t - \pi/2) \), where \(\omega_f = 2\pi/5 \text{ rad/s} \) and \(w_0 = -0.5(x^2 - x) \). The lid is sliding from the left to the right in two different manners as follows.

- Case 1: \(U_0 = 1 \text{ m/s} \).
- Case 2: \(U_0 = 1 - \cos(\omega_f t) \text{ m/s} \).

The combination of the fractional-step projection method and subiterative technique is applied to compute the transient solutions of the flow in the cavity. The grid convergence study is first conducted for the case of stationary bottom wall \((w = 0) \) and maximum velocity-loading of the lid \((U_0 = 2m/s \text{ or } Re = 200) \).
6.5 Numerical results and discussion

Figure 6.11 depicts grid-convergence behaviour of vertical and horizontal velocities along the horizontal and vertical center lines, and static pressure distribution along the stationary bottom wall for the case $Re = 200$. Grid convergence is observed and the numerical results obtained are indistinguishable for grids denser than or equal to 61×61. The contours of stream function, velocity magnitude and static pressure of the flow in the cavity for the case $Re = 200$ are shown in Figure 6.12.

Cartesian grids with a grid spacing of $1/60$ are employed for the case of prescribed bottom wall motion. As shown in Figure 6.13, the fluid domains are represented by Regions A and B for a convex bottom wall, by Regions A, B_1 and B_2 for a concave bottom wall. The LHS of pressure Poisson equation (6.42) is discretised through the following strategy. The LMLS-1D-IRBFN method is employed to discretise the term $\partial^2 p / \partial x^2$ in Region A, while the 1D-IRBFN is used to discretise that term in Region B (or Regions B_1 and B_2). The discretisation of the term $\partial^2 p / \partial y^2$ is carried out using the LMLS-1D-IRBFN method.

Figure 6.14 presents the response of static pressure at the mid-point of the bottom wall (p_M) with respect to time for Case 1. The physical time step (Δt) and pseudo time step ($\Delta \tau$) are taken to be $0.1s$ and $10^{-3}s$, respectively. It is noted that this response varies periodically with the same frequency as that of the bottom wall motion ($= \omega_f / 2\pi$). Figure 6.15 shows the contours of stream function, velocity magnitude and static pressure of the flow inside the cavity for several times $t = 51.5, 52.0, 52.5$ and $53.0s$ (within one time period) for Case 1. The corresponding numerical results for Case 2 are shown in Figures 6.16 and 6.17.
6.5 Numerical results and discussion

Figure 6.11: Flow in a lid-driven open-cavity with a stationary bottom wall: Grid convergence study of vertical and horizontal velocity profiles along the horizontal and vertical center lines, and static pressure distribution along the bottom wall for $Re = 200$.
6.5 Numerical results and discussion

Figure 6.12: Flow in a lid-driven open-cavity with a stationary bottom wall: contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow in the cavity for $Re = 200$, using a grid of 61×61. Each plot contains 50 contour levels varying linearly from the minimum value to the maximum value.

Figure 6.13: Strategy for spatial discretisation using 1D-IRBFN and LMLS-1D-IRBFN methods.
Figure 6.14: Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 1): static pressure at the mid-point of the bottom wall with respect to time t, using a Cartesian grid with a grid spacing of $1/60$.
Figure 6.15: Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 1): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow for several times $t = 51.5, 52.0, 52.5$ and 53.0 s, from top to bottom, using a Cartesian grid with a grid spacing of $1/60$.

$t = 51.5s, U_0 = 1.0m/s$

$t = 52.0s, U_0 = 1.0m/s$

$t = 52.5s, U_0 = 1.0m/s$

$t = 53.0s, U_0 = 1.0m/s$
Figure 6.16: Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 2): static pressure at the mid-point of the bottom wall with respect to time t, using a Cartesian grid with a grid spacing of $1/60$.
Figure 6.17: Flow in a lid-driven open-cavity with a prescribed bottom wall motion (Case 2): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow for several times $t = 51.5s, U_0 = 1.31m/s$, $t = 52.0s, U_0 = 1.81m/s$, $t = 52.5s, U_0 = 2.00m/s$ and $t = 53.0s, U_0 = 1.81m/s$, from top to bottom, using a Cartesian grid with a grid spacing of $1/60$.
6.5.3 Example 3: Forced vibration of a simply supported beam

This example deals with the dynamic behaviour of a simply supported beam subject to a harmonic external force $F(t) = f_0 \sin \omega t$ applied at $x = a$, as shown in Figure 6.18 (where $f_0 = 0.1 N$, $\omega = 2\pi/5 \text{ rad/s}$, $a_L = 1 m$ and $a = 0.5 m$). The problem geometry and material parameters of the beam used here are: the cross-section area $A = 0.002 m^2$, the moment of inertia $I = 6.67 \times 10^{-10} m^4$, Young’s modulus $E = 2.5 \times 10^6 Pa$ and material density $\rho_s = 500 kg/m^3$. The boundary and initial conditions for the simply supported beam can be described as

$$w = 0, \frac{\partial^2 w}{\partial x^2} = 0, \quad \text{at} \quad x = 0, x = a_L$$

$$w = 0, \frac{\partial w}{\partial t} = v_0, \quad \text{at} \quad t = 0$$

(6.57) \hspace{1cm} (6.58)

where v_0 is the initial velocity of the beam. An analytical solution to this problem can be found in (Rao, 2004).

![Figure 6.18: Forced vibration of a simply supported beam.](image_url)

The fully discrete scheme with Newmark’s method for temporal discretisation is employed here. The spatial term is discretised by using the 1D-IRBFN-4 scheme based on a uniform grid. Table 6.4 describes the grid convergence study of deflection u and velocity v of the beam at time $t = 14 s$. For a given time step, the accuracy is not improved further when refining the grid to a
certain grid size. However, the accuracy is greatly improved by reducing the
time step. This indicates that the major numerical error is not due to the 1D-
IRBFN approximation, but due to the temporal discretisation. The steady-state
responses of the forced vibration system obtained by the 1D-IRBFN method are
in good agreement with the analytical solution as shown in Figure 6.19, using
a uniform grid of 61 and time step $\Delta t = 0.1s$.

![Figure 6.19](image_url)

Figure 6.19: Forced vibration of a simply supported beam: steady state response
of the mid-point of a simply supported beam, using a uniform grid of 61 and
$\Delta t = 0.1s$.

Table 6.4: Forced vibration of a simply supported beam: Relative error norms
of deflection $Ne(u)$ and velocity $Ne(v)$ at time $t = 14s$, using several time steps.

<table>
<thead>
<tr>
<th>Grid</th>
<th>$\Delta t = 10^{-1}s$</th>
<th>$\Delta t = 5 \times 10^{-2}s$</th>
<th>$\Delta t = 10^{-2}s$</th>
<th>$\Delta t = 10^{-1}s$</th>
<th>$\Delta t = 5 \times 10^{-2}s$</th>
<th>$\Delta t = 10^{-2}s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1.56E-03</td>
<td>1.53E-03</td>
<td>2.16E-03</td>
<td>6.65E-03</td>
<td>4.69E-03</td>
<td>3.70E-03</td>
</tr>
<tr>
<td>31</td>
<td>3.34E-03</td>
<td>1.09E-03</td>
<td>7.05E-04</td>
<td>3.53E-03</td>
<td>2.45E-03</td>
<td>2.76E-03</td>
</tr>
<tr>
<td>41</td>
<td>3.29E-03</td>
<td>1.05E-03</td>
<td>6.93E-04</td>
<td>3.63E-03</td>
<td>2.36E-03</td>
<td>2.40E-03</td>
</tr>
<tr>
<td>51</td>
<td>3.30E-03</td>
<td>1.06E-03</td>
<td>6.92E-04</td>
<td>3.61E-03</td>
<td>2.34E-03</td>
<td>2.28E-03</td>
</tr>
<tr>
<td>61</td>
<td>3.30E-03</td>
<td>1.06E-03</td>
<td>6.91E-04</td>
<td>3.61E-03</td>
<td>2.33E-03</td>
<td>2.21E-03</td>
</tr>
<tr>
<td>71</td>
<td>3.30E-03</td>
<td>1.06E-03</td>
<td>6.91E-04</td>
<td>3.61E-03</td>
<td>2.32E-03</td>
<td>2.17E-03</td>
</tr>
</tbody>
</table>
6.5 Numerical results and discussion

6.5.4 Example 4: Fluid-structure interaction in a lid-driven open-cavity flow with a flexible bottom wall

This example is concerned with a FSI problem of flow in a lid-driven open-cavity with a flexible bottom wall. The problem configuration is similar to that in Example 2 except that the bottom wall motion is now caused by the interaction with the fluid. The lid is sliding from the left to the right at a velocity

\[U_0 = 1 - \cos(\omega_f t) \; \text{m/s} \]

The bottom wall is modelled as a flexible beam with two different cases of boundary conditions as follows.

- Case 1: Simply supported at both ends.
- Case 2: Clamped at both ends.

The forced vibration of the bottom wall is governed by Equation (6.13), where \(f(x, t) \) is the fluid static pressure acting on the flexible bottom wall. The geometry and material properties of the bottom wall are taken to be the same as those in Example 3. In Case 1, the predictor of the structural interface displacement at the new time level \((w_p^{n+1}) \) is computed through Approach 1 (Equation (6.51)) and Approach 2 (Equation (6.52)). Figure 6.20 presents the comparison of deflection of the mid-point of the bottom wall \((w_M) \) with respect to time between the two approaches. It appears that both approaches yield almost the same results.

In Case 2, the first order accurate predictor of the bottom wall displacement is used. Figure 6.21 shows the deflection of the mid-point of the clamped bottom wall with respect to time in comparison with that in Case 1. The deflection of the bottom wall is downward for both cases. When the vibration amplitude of the bottom wall is stable, the deflection of its mid-point is equal to

\[-0.1342 \pm 0.0129 \; \text{m} \]

for Case 1 and

\[-0.0275 \pm 0.0162 \; \text{m} \]

for Case 2. As expected, the deflection of the clamped bottom wall is much smaller than that of the simply supported bottom wall of the same geometry and material properties. It is
6.5 Numerical results and discussion

Figure 6.20: Flow in a lid-driven open-cavity with a simply supported flexible bottom wall: deflection of the mid-point of the bottom wall with respect to time t between two different approaches of predictors, using a Cartesian grid with a grid spacing of $1/60$.

Noted that the deflection of the bottom wall varies periodically with the same frequency as that of the lid motion. The contours of stream function, velocity magnitude and static pressure of the flow inside the cavity at time $t = 92.5s$ for Cases 1 and 2 are described in Figures 6.22 and 6.23, respectively.
Figure 6.21: Flow in a lid-driven open-cavity with a flexible bottom wall: deflection of the mid-point of the clamped bottom wall with respect to time t in comparison with the case of simply supported bottom wall, using a Cartesian grid with a grid spacing of 1/60.
Figure 6.22: Flow in a lid-driven open-cavity with a simply supported flexible bottom wall (Case 1): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow at time $t = 92.5\text{s}$, using a Cartesian grid with a grid spacing of $1/60$. Each plot contains 50 contour levels varying linearly from the minimum value to the maximum value.

Figure 6.23: Flow in a lid-driven open-cavity with a clamped flexible bottom wall (Case 2): contours of stream function (left), velocity magnitude (middle) and static pressure (right) of the flow at time $t = 92.5\text{s}$, using a Cartesian grid with a grid spacing of $1/60$. Each plot contains 50 contour levels varying linearly from the minimum value to the maximum value.
6.6 Concluding remarks

A numerical procedure for FSI analysis based on the 1D-IRBFN and LMLS-1D-IRBF methods is devised and demonstrated with the analysis of the flow inside a lid-driven open-cavity with a flexible bottom wall. A combination of the fractional-step projection method and subiterative technique is presented for solving unsteady incompressible 2-D Navier-Stokes equations in terms of primitive variables, while the Newmark’s method is employed for a solution of forced vibration of a beam based on the Euler-Bernoulli theory. The fluid solver is verified through a solution of mixed convection in a lid-driven cavity with a hot moving lid and a cold stationary bottom wall. The numerical results obtained are in good agreement with the published results of other authors. The Cartesian grids are used to discretise both rectangular and irregular fluid domains. The structural analysis solver is successfully verified by comparing the present numerical results with the analytical solution of forced vibration of a simply supported beam. Finally, the proposed numerical procedure is demonstrated with a solution of a fluid-structure interaction system with two different cases of bottom wall boundary conditions. The numerical results show that the bottom wall vibrations reach a steady state after a certain time and the deflection of the clamped bottom wall is much smaller than that of the simply supported bottom wall of the same geometry and material properties.
Chapter 7

Conclusions

The outcome of this research project is the successful development of (i) a 1D-IRBFN method for structural analysis of laminated composite plates; (ii) a novel local MLS-1D-IRBFN (or LMLS-1D-IRBFN) method for steady and unsteady incompressible viscous flows and natural convection flows in multiply-connected domains; and (iii) a new numerical procedure based on the 1D-IRBFN and LMLS-1D-IRBFN methods for fluid-structure interaction (FSI) analysis. Cartesian grids are used to discretise both simply and multiply-connected domains with rectangular and non-rectangular shapes. Unlike the conventional differentiated radial basis function network (DRBFNs) method (Kansa, 1990b), IRBFNs are constructed through integration rather than differentiation, which helps to stabilise a numerical solution and provide an effective way to implement derivative boundary conditions.

A development of the 1D-IRBFN method for free vibration of laminated composite plates based on the first order shear deformation theory (FSDT) has been presented in Chapter 2. Plates with various boundary conditions, length-to-width ratios a/b, thickness-to-length ratios t/b, and material properties are considered. Numerical results show that faster rates of convergence are obtained for higher t/b ratios irrespective of a/b ratios of the rectangular plates. The ef-
fect of boundary conditions on the natural frequencies indicates that higher constraints at the edges yield higher natural frequencies. It is also found that the present method is not only highly accurate but also very stable for a wide range of modulus ratios. The obtained numerical results are in good agreement with the available exact solutions and other published results in the literature.

A development of a novel LMLS-1D-IRBFN technique for steady incompressible viscous flows has been described in Chapter 3. The LMLS-1D-IRBFN approximation is based on the partition of unity concept to incorporate the MLS and 1D-IRBFN methods in a new approach. This approach offers the same order of accuracy as the 1D-IRBFN method, while the system matrix is more sparse than that of the 1D-IRBFN, which helps reduce the computational cost significantly. The LMLS-1D-IRBFN shape function possesses the Kronecker-δ property which allows an exact imposition of the essential boundary condition. The numerical results for the lid-driven cavity flows at high Re numbers showed that the calculation of convection terms using the 1D-IRBFN technique are more accurate than the one using the LMLS-1D-IRBFN technique. The LMLS-1D-IRBFN method can be used to handle irregular domain problems such as flow past a circular cylinder, while the standard FDM cannot be applied directly at the grid points near the boundary of irregular domains. Owing to the use of integrated RBFN for local approximation, the present method appears to be more accurate than the FDM with central-difference scheme.

In Chapter 4, the LMLS-1D-IRBFN has been applied to simulate natural convection flows in multiply-connected domains in terms of stream function, vorticity and temperature. The stream function value on the inner boundary is unknown and determined by using the single-valued pressure condition (Lewis, 1979). The numerical procedure is verified through a solution of natural convection flows in concentric and eccentric annuli in terms of stream function, vorticity and temperature. The present numerical results for a wide range of Rayleigh numbers and various geometry parameters are in good agreement with
the numerical data available in the literature.

In Chapter 5, the LMLS-1D-IRBFN has been further extended to solve time-dependent problems such as Burgers' equation, unsteady flow past a square cylinder in a horizontal channel and unsteady flow past a circular cylinder. The combination of the LMLS-1D-IRBFN and a domain decomposition technique is successfully developed for solving large-scale fluid flow problems. The present numerical results including Strouhal number, drag and lift coefficients are in good agreement with other published results available in the literature. The influence of blockage ratio on the characteristics of flow past a square cylinder in a channel is investigated for a range of Reynolds numbers \(60 \leq Re \leq 160\) and several blockage ratios \(\beta_0 = 1/2, 1/4 \text{ and } 1/8\). The obtained numerical results indicate that (i) the critical Reynolds number (at which the flow becomes unsteady) increases with increasing blockage ratio; (ii) time-averaged drag coefficient decreases with increasing Reynolds number up to 160; and (iii) the Reynolds number has a very weak influence on the Strouhal number for the cases of \(\beta_0 = 1/2\) and \(1/4\).

A new numerical procedure based on the 1D-IRBFN and LMLS-1D-IRBFN methods for FSI analysis has been devised and demonstrated with the analysis of the flow inside a lid-driven open-cavity with a flexible bottom wall in Chapter 6. A combination of the fractional-step projection method and subiterative technique is presented for solving unsteady incompressible 2-D Navier-Stokes equations in terms of primitive variables, while the Newmark’s method is employed for a solution of forced vibration of a beam based on the Euler-Bernoulli theory. The fluid solver is successfully verified through a solution of mixed convection in a lid-driven cavity with a hot moving lid and a cold stationary bottom wall. The structural analysis solver is successfully verified by comparing the present numerical result with the analytical solution of forced vibration of a simply supported beam. Finally, the proposed numerical procedure is demonstrated with a solution of a fluid-structure interaction system.
In the present research, we limit the analysis to 2-D problems and the fluid is considered to be Newtonian. For future developments, it is possible to extend the present methods to 3-D problems, possibly with non-linear geometric or material behaviours.
Appendix A

Basis Functions Used in One-Dimensional Integrated Radial Basis Function Networks Schemes

Multiquadrics radial basis function (MQ-RBF) in one-dimensional form is defined by

\[G^{(i)}(x) = \sqrt{(x - c^{(i)})^2 + a^{(i)}^2} \] \hspace{1cm} (A.1)

where \(c^{(i)} \) and \(a^{(i)} \) are the center and width of the \(i^{th} \) MQ-RBF, respectively. In the present study, the set of centers is chosen to be the same as the set of collocation points, and the RBF width is determined as \(a^{(i)} = \beta d^{(i)} \), \(\beta \) is a positive factor, and \(d^{(i)} \) the distance from the \(i^{th} \) center to its nearest neighbour.

For the 1D-IRBFN-2 scheme, new basis functions obtained from integrating MQ-RBFs are as follows.
\[H_{[i]}^{(i)}(x) = \frac{r}{2} A + \frac{(a^{(i)})^2}{2} B, \]
(A.2)

\[H_{[0]}^{(i)}(x) = \left(\frac{r^2}{6} - \frac{(a^{(i)})^2}{3} \right) A + \frac{(a^{(i)})^2 r}{2} B, \]
(A.3)

where \(r = x - c^{(i)} \), \(A = \sqrt{r^2 + a^{(i)}r} \), and \(B = \ln(r + A) \).

For the 1D-IRBFN-4 scheme, new basis functions obtained from integrating MQ-RBFs are as follows.

\[H_{[3]}^{(i)}(x) = \frac{r}{2} A + \frac{(a^{(i)})^2}{2} B, \]
(A.4)

\[H_{[2]}^{(i)}(x) = \left(\frac{r^2}{6} - \frac{(a^{(i)})^2}{3} \right) A + \frac{(a^{(i)})^2 r}{2} B, \]
(A.5)

\[H_{[1]}^{(i)}(x) = \left(-\frac{13(a^{(i)})^2 r}{48} + \frac{r^3}{24} \right) A + \left(-\frac{(a^{(i)})^4}{16} + \frac{(a^{(i)})^2 r^2}{4} \right) B, \]
(A.6)

\[H_{[0]}^{(i)}(x) = \left(\frac{(a^{(i)})^4}{45} - \frac{3(a^{(i)})^2 r^2}{720} + \frac{r^4}{120} \right) A + \left(-\frac{3(a^{(i)})^2 r}{48} + \frac{4(a^{(i)})^2 r^3}{48} \right) B. \]
(A.7)
References

REFERENCES

flow past a circular cylinder at Reynolds number up to 100, *Journal of Fluid

across a confined square cylinder in the steady flow regime: Effect of Peclet

across a confined square cylinder, *International Communications in

convection in eccentric annuli between a square outer cylinder and a circular
47: 291–313.

viscous flows past a circular cylinder by hybrid FD scheme and meshless
least square-based finite difference method, *Computer Methods in Applied

around two circular cylinders by mesh-free least square-based finite difference

meshless method for fluid flow and conjugate heat transfer, *ASME Journal

simulation of airfoil vibrations induced by turbulent flow, *Journal of Computa-
tional and Applied Mathematics* **218**: 34–42.

Farhat, C. and Lesoinne, M. (1998). Two efficient staggered algorithms for the
serial and parallel solution of three-dimensional nonlinear transient aeroe-

Udaykumar, H. S., Mittal, R., Rampunggoon, P. and Khanna, A. (2001). A

REFERENCES

