Measurement of Barley (*Hordeum vulgare*) feed quality parameters *In Sacco* and mapping of associated Quantitative Trait Loci (QTL) in Cattle

A Dissertation submitted by

Peter Wolfgang Gous

Bachelor of Science

For the award of

Master of Science

2009
Abstract.

Barley (*Hordeum vulgare*) is a major feed source for the livestock industry. Its competitiveness against other cereal grains such as wheat, oats, maize and grain sorghum depends largely on its price per unit of expressed feed quality. The traits which contribute to feed quality in barley are largely quantitative in nature but little is known about their genetic control and few studies have attempted to identify these quantitative trait loci (QTL).

A study to identify the QTLs associated with feed quality was performed using a F6 – derived recombinant inbred barley population from a Tallon x Scarlet cross. 117 unique lines from the Tallon x Scarlett population, for which a genetic map is available, were used. Samples from each line were incubated for three hours in the rumen of fistulated cattle, recovered, washed and dried for analysis. Both the original samples (pre-) and the post-digestion residue were analysed for key grain traits of feed quality, namely acid detergent fibre (ADF), starch, protein and *in sacco* dry matter digestibility. Analysis was performed using both analytical chemistry and NIR techniques.

The phenotypic results and data were used to identify genomic regions (QTL) associated with these traits. Putative QTLs were found on chromosome 2H, 3H, 5H and 7H. However, numerous suggestive QTLs were found throughout the barley genome. Genetic markers that define these QTL will be an effective tool for the selection and improvement of feed barley in the future. Additionally the research showed that the development of NIR calibrations appropriate for the detection of post-digestion nutrient measurement is essential for its establishment as a rapid, non-destructive feed quality measurement technique. This study also validated the ability of these QTL analyses to be performed under Australian conditions and with local feed grains and animals.
Declaration

I certify that the ideas, experimental work, results, analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

__________________________ _________________________
Signature of Candidate Date

Peter Wolfgang Gous

ENDORSEMENT

__________________________ _________________________
Signature of Supervisor/s Date

Professor Mark Sutherland (USQ)

__________________________ _________________________
Signature of Supervisor/s Date

Dr. Glen Fox (DEEDI)
Acknowledgements

I commenced this Masters project in 2007 at the University of Southern Queensland’s, Centre for Systems Biology under the joint supervision of Professor Mark Sutherland (USQ) and Dr. Glen Fox (DEEDI). This project was funded by the GRDC and by the former Queensland Department of Primary Industry currently the Department of Employment, Economic Development and Innovation (DEEDI).

I would like to thank members of the Centre for Systems Biology for their guidance and support over the last three years. I am particularly grateful to Dr. Bill Bovill and Dr. Anke Lehmensiek, for all their aid in getting settled and established in the laboratory. Their mentoring, encouragement and training helped in the completion of this research project. I would also like to thank Noel Knight for his aid in proof reading the thesis chapters.

I would like to thank members of DEEDI; Dr. Emma Mace and Dr. Bert Collard, for providing the genetic material, molecular map and a starting point for the molecular research of this project. Alison Kelly, biometrician with DEEDI, provided expert advice in the construction of the experimental design and data analysis. I would further like to extend my gratitude to Donna Hocraft and Jim Kidd for all their aid in sample preparation for the phenotypic trial.

To my supervisors Professor Mark Southerland and Dr. Glen Fox, thank you for your highly appreciated guidance, encouragement and active support which made this project possible. I would like to sincerely thank Professor Sutherland for giving me the opportunity to conduct this research and further my education.
To my family and friends thank you for being my constant and eternal support system. To all
those that I may have neglected to mention my sincere apologies, and thank you for all your help
with this project.
Contents

Abstract ... ii
Declaration.. iii
Acknowledgements... iv
Contents.. vi
Tables .. viii
Figures .. viii

Chapter 1

1. Literature review ... 1
 1.1 History and Taxonomy ... 1
 1.2 Types of barley .. 2
 1.3 Production and breeding .. 5
 1.4 Uses of barley ... 6
 1.5 Requirements for animal feed .. 8
 1.5.1 Ruminal nutrition and metabolism ... 9
 1.5.2 Fibre ... 12
 1.5.3 Starch .. 13
 1.5.4 Protein ... 15
 1.6 Genetic improvement of barley feed quality .. 16
 1.6.1 Genetic control of quality parameters ... 18
 1.7 Identification of QTL for traits influencing barley feed quality 19
 1.7.1 Markers .. 19
 1.7.2 Mapping populations ... 25
 1.7.3 Statistical tools for genetic mapping ... 27
 1.8 Research objectives .. 29

Chapter 2

2. Cattle experimentation ... 32
 2.1 Introduction ... 32
 2.2 Materials and methods .. 34
 2.2.1 Animal selection and adaptation ... 34
 2.2.2 Experimental design ... 35
 2.2.3 Sample preparation ... 35
6.1.1. General Discussion ... 90
6.1.2. Future Directions ... 92
6.1.3. Conclusions ... 93
7. References. ... 94

Tables
Table 2.1: The average daily gain (ADG) of each animal used in the DMD trial. 39
Table 2.2: Sources accounting for variance and standard error within DMD data set 41

Table 3.1: The correlation between sources of variance attributing to protein content and digestion. ... 49
Table 3.2: The variance obtained within the pre- and post-digestion protein content. 50
Table 3.3: The correlation matrix between the various feed quality traits; pre-, post-digestion and amount digested .. 51

Table 4.1: Correlations between feed quality traits both pre- and post digestion for Tallon x Scarlett, as measured with NIR. .. 67
Table 4.2: Variance observed for the feed quality traits of interest in pre- and post-digestion samples across the Tallon x Scarlett population .. 68

Table 5.1: Summary of QTL associated with feed quality traits in a Tallon x Scarlett population. The phenotypic data was derived through analytical chemistry as described in Chapters 2 and 3. ... 81
Table 5.2: Summary of QTL associated with feed quality traits in a Tallon x Scarlett population. The phenotypic data was derived through NIR analysis as described in Chapter 4. 82

Figures
Figure 1.1: Shows the labelled cross section of a grain of barley (Haard & Chism 1996). 3
Figure 1.2: A representation of the digestive pathway of ingested feed through the four stomachs of a ruminant (Farm 2005). ... 10
Figure 1.3: An illustration of the digestive and synthetic pathway of protein in the rumen. This includes the recycling of free nitrogen in the form of ammonia which is utilized by microbes for protein synthesis (DFID 2006). ... 16

Figure 2.1: The phenotypic distribution of the dry matter digestability (DMD) after an 3 hour incubation period within the rumen for lines in the Tallon x Scarlett population. 40

Figure 3.1: Distribution of protein content per dry basis of the sample grains expressed as a percentage of the total grain weight. ... 48
Figure 3.2: Distribution of protein digested from the sample lines in the Tallon x Scarlett population, which can also be used to provide estimates of increased protein content due to the presence of bacteria and animal enzymes. ... 49

Figure 3.3: The distribution plot of pre-digestion ADF content in the Tallon x Scarlett population. 52

Figure 3.4: The distribution plot of ADF content digested from the sample lines in the Tallon x Scarlett population.. 52

Figure 3.5: The distribution plot of pre-digestion starch content of the Tallon x Scarlett sample population.. 53

Figure 3.6: The distribution plot of Starch content digested from the sample lines in the Tallon x Scarlett population.. 54

Figure 3.7: Bi-plot representing 46% variance of the data set explained. The variance of the bi-plot is broken down into two components found on the axis representing 25% (x-axis) and 21% (y-axis). The correlation between two points observed is derived by the determination of the cosine of θ. The distance between the two points is interpreted as the variance between the points. .. 55

Figure 4.1: Flow diagram, of sample preparation and areas of NIR analysis and measurements. 62

Figure 4.2: Pre- and Post-Digestion population distribution for the percentage ADF component across the lines of the Tallon x Scarlett population... 64

Figure 4.3: Pre- and Post-Digestion population distribution for the percentage Protein component across the lines of the Tallon x Scarlett population.. 65

Figure 4.4: Pre- and Post-Digestion population distribution for the percentage Starch component across the lines of the Tallon x Scarlett population.. 66

Figure 4.5: Correlation between pre- and post-digestion Starch content across the Tallon x Scarlett population, with the nuisance variables statistically manipulated within the NIR data set. .. 69

Figure 4.6: Bi-plot representing 81% variance of the data set explained. The variance of the bi-plot is broken down into two components found on the axis representing 59.7% (x-axis) and 21.3% (y-axis). The correlation between two points observed is derived by the determination of the cosine of θ. The distance between the two points is interpreted as the variance between the points. .. 70

Figure 5.1a: QTL analysis for feed quality traits in Tallon x Scarlett F6-derived RIL population (Chromosome 1H – 3H). .. 85

Figure 5.1b: QTL analysis for feed quality traits in Tallon x Scarlett F6-derived RIL population (Chromosome 4H – 7H). .. 86