UNIVERSITY OF SOUTHERN QUEENSLAND

Improved irrigation of cotton via real-time, adaptive control of large mobile irrigation machines

A Dissertation submitted by

Alison Christine McCarthy, B.Eng (Hons)

for the award of

Doctor of Philosophy

August 2010
Copyright

by

Alison Christine McCarthy

2010
Abstract

Improving the efficiency of water use in agriculture is increasingly essential to maintain the profitability and sustainability of farms. This involves applying only the minimum necessary irrigation water to maintain or improve the yield of individual plants. Improving cotton yield involves management of flower/fruit production in relation to vegetative growth. The cotton industry represents a significant proportion of agricultural production and water use in Australia.

Irrigation control strategies can be used to improve site-specific irrigation. These control strategies generally require weather, plant and/or soil data to determine irrigation volumes and/or timing that improve crop water use efficiency while maintaining or improving crop yield. In this dissertation the difficulties in applying standard control theory to irrigation control are reviewed, in particular that the system, the growing crop, varies with time and does not have fully-defined dynamics. Hence, as the plant response and environmental conditions fluctuate throughout the season, control strategies which accommodate temporal and spatial variability in the field and which locally modify the control actions (irrigation amounts) need to be ‘adaptive’. Such irrigation control systems may then be implemented on large mobile irrigation machines, both ‘lateral move’ and ‘centre pivot’ configurations, to provide automatic machine operation.

This dissertation presents the specification and creation of a simulation framework ‘VARIwise’ to aid the development, evaluation and management of spatially and tem-
porally varied site-specific irrigation control strategies. The cotton model OZCOT has been integrated into VARIwise to provide feedback data in the control strategy simulations. VARIwise can accommodate sub-field scale variations in all input parameters using a 1 m² cell size, and permits application of differing control strategies within the field, as well as differing irrigation amounts down to this scale.

An automatic model calibration procedure was developed for VARIwise to enable real-time input of field data into the framework. The model calibration procedure was accurately implemented with measured field data and the calibrated model was then used to evaluate the effect of using different types of data in an irrigation control system. With the field data collected, the model was most effectively calibrated using the full set of plant, soil and weather data, while either weather-and-plant or soil-and-plant input provided adequate inputs to the control system if only two inputs were available.

A literature review of control systems identified three adaptive control strategies that are applicable to irrigation, namely: (i) Iterative Learning Control (ILC) which involves applying irrigation volumes to cells in the field calculated by comparing the desired and measured value of the input variable for control (e.g. soil moisture deficit); (ii) iterative hill climbing control which involves applying test irrigation volumes to test cells in the field to determine the application that produced the best crop response and applying that volume to the remainder of the field; and (iii) Model Predictive Control (MPC) which involves using a calibrated crop model to evaluate various irrigation applications and timings to determine which irrigation decision to implement.

The three control strategies were implemented and simulated in VARIwise to evaluate their respective robustness to limitations in data availability and system constraints. These strategies effectively adapted to temporal changes in weather conditions and spatially variable soil properties. For the set of field conditions simulated in VARIwise, the ILC, iterative hill climbing and MPC controllers produced their highest yield and water use efficiency with soil data, weather-and-plant data, and the full data input, respectively. MPC was most sensitive to spatially sparse input data but performed well with spatially variable rainfall and limited machine capacity. ILC was least sensitive to
spatially sparse input data and variable rainfall, whilst iterative hill climbing control was most sensitive to spatially sparse input data and variable rainfall. Hence, in situations of high data input MPC should be implemented, whilst in situations of low data input ILC should be implemented. Iterative hill climbing control was most sensitive to limited irrigation machine capacity.

It is further concluded that cotton yield and irrigation water use efficiency may be significantly improved using adaptive control systems; and that adaptive control systems can adjust the irrigation application and improve the irrigation performance despite various data availability limitations and irrigation hardware constraints.
Certification of Thesis

I certify that the ideas, experimental work, results, analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

__ _______________________
Signature of Candidate Date

ENDORSEMENT

__ _______________________
Signature of Supervisors Date
Acknowledgments

Thank you to my family for their support throughout my PhD. Thank you to my supervisors Associate Professor Nigel Hancock and Professor Steven Raine for their invaluable guidance and assistance.

I appreciate the advice and support from the Faculty of Engineering and Surveying and National Centre for Engineering in Agriculture staff including Professor Rod Smith, Dr Simon White and Loretta McKeering. I am grateful to Dr Jochen Eberhard of the NCEA for assistance with the fieldwork. I am also grateful to Kim and Drew Bremner in Dalby for providing a field trial site.

I acknowledge the scholarship funding provided by the Australian Research Council and the Cotton Research and Development Corporation.
List of Publications

The following articles have been published or submitted for publication about the research contained within this dissertation.

JOURNAL

CONFERENCE

POSTER

Contents

Abstract iii
Certification of Thesis vi
Acknowledgments vii
List of Publications vii
List of Tables xix
List of Figures xxi

Chapter 1 Introduction 1
1.1 Background ... 1
1.2 Research aim ... 4
1.3 Dissertation outline ... 4

Chapter 2 Literature Review 8
2.1 Spatial and temporal variability – significance, measurement and management .. 8
2.1.1 Spatial and temporal variability 8
2.1.2 Measurement of variability ... 10
2.1.2.1 Weather measurement .. 10
2.1.2.2 Soil measurement .. 11
2.1.2.3 Plant measurement ... 13
3.3.8 Implementation of control strategies ... 52
3.3.9 Display of control strategy output ... 53
3.4 Real-time implementation of VARIwise for irrigation machine control ... 55
3.5 A VARIwise demonstration of industry standard irrigation strategies 55
 3.5.1 Methodology .. 56
 3.5.2 Results .. 58
3.6 Conclusion ... 61

Chapter 4 Field Calibration of the OZCOT Growth Model Within VARI-wise 62
4.1 Objectives .. 63
4.2 Site and equipment ... 63
4.3 Experimental procedure ... 64
 4.3.1 Fieldwork ... 64
 4.3.2 Data processing .. 66
 4.3.3 Model calibration ... 66
4.4 Measured data and data processing ... 66
 4.4.1 Weather data .. 67
 4.4.2 Soil data .. 68
 4.4.3 Plant data .. 76
4.5 Model calibration ... 79
 4.5.1 Comparison of soil data from fieldwork and calibrated model ... 79
 4.5.2 Comparison of plant data from fieldwork and calibrated model . 83
 4.5.3 Conclusions ... 86
4.6 Exploration of data requirements for adaptive irrigation control 89
 4.6.1 Methodology .. 89
 4.6.2 Results .. 90
 4.6.3 Conclusion ... 93
Chapter 5 Adaptive Irrigation Control Strategies Implemented in VARI-wise – Overview and Establishment

5.1 Holistic irrigation control – general observations

5.1.1 Slow speed of crop dynamics

5.1.2 In-field variability sensing

5.1.3 Characteristics of the irrigation machine

5.1.4 Fundamental resource constraints

5.1.5 Unknown process dynamics

5.2 Development of irrigation strategies

5.2.1 Iterative learning control

5.2.2 Iterative hill climbing control

5.2.3 Model predictive control

5.3 ‘Case study’ methodology for comparing control strategies

5.4 Agronomic parameters

5.5 Case study scenario

Chapter 6 Implementation of an Iterative Learning Controller in VARI-wise

6.1 Implementation

6.1.1 Determining day of first irrigation

6.1.2 Calculating first irrigation volume

6.1.3 Checking data availability

6.1.4 Determining day of next irrigation

6.1.5 Determining subsequent irrigation volumes

6.2 Case study: optimisation using daily input data

6.2.1 Methodology

6.2.2 Results and discussion

6.3 Irrigation conclusions
Appendix A Candidate Adaptive Control Systems in Relation to Irrigation Control

A.1 Conventional adaptive control

A.1.1 Open-loop adaptive control

A.1.2 Model-reference adaptive control

A.1.3 Model-identification adaptive control

A.1.4 Discussion – utility of conventional adaptive control techniques for irrigation

A.2 ‘Intelligent’ adaptive control

A.2.1 Rule-based adaptive control

A.2.2 Knowledge-based expert adaptive control

A.2.3 Neural adaptive control

A.2.4 Adaptive fuzzy control

A.2.5 Genetic adaptive control

A.2.6 Hybrid control

A.2.7 Discussion – utility of ‘intelligent’ adaptive control techniques for irrigation

A.3 Additional adaptive control approaches

A.3.1 Dual adaptive control

A.3.2 Auto-tuning

A.3.3 Self-oscillating adaptive control

A.3.4 Extremum adaptive control

A.3.5 Iterative learning control

A.3.6 Model predictive control

A.3.7 Discussion – utility of additional adaptive control approaches for irrigation

A.4 Alternatives to adaptive control

References
List of Tables

3.1 Databases within VARIwise .. 39

3.2 Data inputs used for control when all data inputs specified in left hand column are not available .. 48

4.1 Irrigation volumes applied to the low, medium and high irrigation treatments .. 64

4.2 VARIwise simulation output at the end of the trial period on 8 February 2009 for all seven combinations of input data and the three plot starting conditions, followed by the irrigation application in the field trial and final measured plant data .. 91

5.1 Simulations conducted with each control strategy to compare interactions between control strategies and sensor and irrigation machine restrictions .. 103

5.2 Agronomic factors used in cotton model OZCOT for control strategy simulations .. 104

6.1 Simulations conducted to compare interactions between control strategies and input variables for Iterative Learning Control .. 116

6.2 Performance of the iterative learning control strategy with variable-rate irrigation machine for different input data combinations where CWUI and IWUI are defined in Section 3.3.8 .. 117

7.1 Simulations conducted to compare interactions between control strategies and input variables for iterative hill climbing control .. 131

7.2 Performance of the iterative hill climbing control strategy with variable-rate irrigation machine for different input data combinations .. 133

8.1 Simulations conducted to compare interactions between control strategies and input variables for Model Predictive Control .. 146
8.2 Performance of the model predictive control strategy with variable-rate irrigation machine for different input data combinations (yield maps of simulations #12-#21 are in Figure 8.2) .. 147

8.3 Performance of the model predictive control strategy with variable-rate irrigation machine for different weather data inputs, starting nitrogen contents and optimised variables (yield maps of simulations #22-#31 are in Figure 8.5) .. 154

8.4 Performance of the model predictive control strategy optimising yield for crop season with rainfall and 250 kg/ha of available nitrogen for different input data combinations (yield maps of simulations #32-#37 are in Figure 8.8) .. 160

8.5 Control strategy simulation outputs referred to in this section 163

9.1 Simulations conducted with each control strategy to compare interactions between control strategies and sensor and irrigation machine restrictions .. 166

9.2 Performance of the iterative learning control strategy with different numbers of sampling points .. 168

9.3 Performance of the iterative hill climbing control strategy with different numbers of sampling points .. 170

9.4 Performance of the model predictive control strategy with different numbers of sampling points .. 173

9.5 Performance of the adaptive control strategies with spatially variable rainfall with ±20% standard deviation (replicates 1 to 10 for each strategy); plus the corresponding result for constant rainfall (#1, #9 and #29) .. 177

9.6 Performance of the adaptive control strategies with spatially variable rainfall with ±50% standard deviation (replicates 1 to 10 for each strategy); plus the corresponding result for constant rainfall (#1, #9 and #29) .. 178

9.7 Performance of the control strategies with different numbers of days between data input .. 181

9.8 Performance of the control strategies with different irrigation machine capacities and types .. 188

B.1 Crop parameters in OZCOT input variety file .. 233

B.2 Soil parameters in OZCOT input soil file .. 234

B.3 Means and ranks of the first-order sensitivity indices for each parameter in the OZCOT input files .. 244
List of Figures

1.1 Block diagram of dissertation outline .. 5

2.1 Block diagrams of: (a) open-loop control system; and (b) closed-loop control system ... 21

2.2 Block diagram of open-loop control system with disturbances on the process input and output (adapted from Nise 2004) 22

2.3 Block diagram of generic adaptive control system (adapted from Landa et al. 1998) ... 25

3.1 Conceptual adaptive control system for variable-rate irrigation – the basis of the simulation framework VARIwise 32

3.2 Block diagram for VARIwise software ... 36

3.3 VARIwise cells for field irrigated by: (a) centre pivot; and (b) lateral move irrigation machines .. 37

3.4 Example filename of spatial database in VARIwise 38

3.5 Examples of centre pivot uniformity distributions (obtained from Raine et al. 2008) ... 40

3.6 Movement of irrigation machine over field (with assigned cell numbers displayed) for: (a) centre pivot; and (b) lateral move 44

3.7 Example simulation output for soil moisture deficit-triggered irrigation: (a) graph of soil moisture during crop season in one cell; and (b) yield map for last day of season .. 54

3.8 EM38 map: (a) to be imported into VARIwise; and (b) with electrical conductivity values assigned to each cell of the VARIwise simulation for the area circled in (a) .. 57

3.9 Trigger points for soil moisture deficit-triggered irrigation strategy in VARIwise ... 58
3.10 Yield output of the fixed irrigation strategy ('A') (the displayed legend is for the yield maps in Figures 3.10 and 3.11) 59

3.11 Yield output of the soil moisture deficit-triggered irrigation strategy ('B') (where the legend for the yield maps is shown in Figure 3.10) 60

4.1 Field trial layout showing three replicates of low, medium and high application controlled via variable-rate nozzles overlaid on an EM38 electrical conductivity map of the trial area (the dark areas at top and centre are lowest quintile; those at bottom are highest quintile) 65

4.2 Comparison of daily ET_o measured using in-field weather station with daily ET_o from SILO data and 1:1 line 67

4.3 Soil moisture estimated by the generic Sentek algorithm during the trial period for low irrigation treatments 69

4.4 Soil moisture estimated by the generic Sentek algorithm during the trial period for medium irrigation treatments 70

4.5 Soil moisture estimated by the generic Sentek algorithm during the trial period for high irrigation treatments 71

4.6 Calibration of Enviroscan sensor data 72

4.7 Adjusted soil moisture during the trial period for low irrigation treatments ... 73

4.8 Adjusted soil moisture during the trial period for medium irrigation treatments ... 74

4.9 Adjusted soil moisture during the trial period for high irrigation treatments ... 75

4.10 Average and standard error of: (a) plant height; (b) square count; and (c) boll count on the measurement days for the low, medium and high irrigation treatments ... 78

4.11 Comparison of model output, both original and calibrated, with minimum, maximum and average measured soil moisture curves for: (a) low irrigation treatments; (b) medium irrigation treatments; and (c) high irrigation treatments ... 81

4.12 Comparison of soil moisture data from Enviroscan probe, from calibrated model and 1:1 line ... 82

4.13 Comparison of model output, both original and calibrated, with minimum, maximum and average measured leaf area index for: (a) low irrigation treatments; (b) medium irrigation treatments; and (c) high irrigation treatments ... 84
4.14 Comparison of model output, both original and calibrated, with minimum, maximum and average measured square counts for: (a) low irrigation treatments; (b) medium irrigation treatments; and (c) high irrigation treatments. .. 85

4.15 Comparison of model output, both original and calibrated, with minimum, maximum and average measured boll counts for: (a) low irrigation treatments; (b) medium irrigation treatments; and (c) high irrigation treatments. .. 87

4.16 Measured data versus data from calibrated model for: (a) leaf area index; (b) square counts; and (c) boll counts .. 88

4.17 (a) Irrigation volume applied and (b) final cotton plant height for seven combinations of data input for low, medium and high irrigation treatment plots (W, S and P denote weather, soil and plant data input, respectively). .. 91

5.1 Soil variability for fixed strategy to compare with adaptive control strategy results .. 105

5.2 Weather profile used in iterative learning, iterative hill climbing and model predictive control strategies .. 106

5.3 Yield map for fixed strategy to compare with adaptive control strategy results with 6.2 ± 2.1 bales/ha .. 107

6.1 Target leaf area index used for iterative learning control strategy for cotton in VARIwise (Wells & Hearn 1992) .. 114

6.2 Yield output of iterative learning control strategy with variable-rate irrigation machine and legend for yield maps (numerical data for simulations #1-#5 are shown in Table 6.2) .. 119

6.3 Irrigation volumes applied to sand, clay loam and clay cells for strategies that target: (a) soil moisture deficit (simulation #1); and (b) leaf area index (simulation #2) .. 120

6.4 Simulated daily soil moisture deficit in sand, clay loam and clay cells for strategies that target: (a) soil moisture deficit (simulation #1); and (b) leaf area index (simulation #2) .. 121

6.5 Simulated daily leaf area index in sand, clay loam and clay cells for strategies that target: (a) soil moisture deficit (simulation #1); and (b) leaf area index (simulation #2) .. 122

7.1 VARIwise determination of maximum PI using a quadratic fit to the available data points .. 130
7.2 (a) Soil variability map for iterative hill climbing control strategy simulation; (b) the cells assigned to each zone using the soil variability data of Figure 7.2(a) ... 132

7.3 Yield output of iterative hill climbing control strategy with variable-rate irrigation machine and legend for yield maps (numerical data for simulations #6-#11 are shown in Table 7.2) ... 135

7.4 Irrigation volumes applied to sand, clay loam and clay cells for strategies that maximise square count: (a) without weather data (simulation #7); and (b) with weather data (simulation #9) ... 136

7.5 Simulated daily soil moisture deficit in sand, clay loam and clay cells for strategies that (in combination with input weather data): (a) target soil moisture deficit (simulation #8); and (b) maximise square count (simulation #9) ... 137

7.6 Simulated daily square count in sand, clay loam and clay cells for strategies that (in combination with input weather data): (a) target soil moisture deficit (simulation #8); and (b) maximise square count (simulation #9) ... 138

8.1 Soil variability used for model that is calibrated in model predictive control system: (a) plant available water capacity; and (b) soil moisture content on sowing date ... 149

8.2 Yield output of model predictive control strategy for different combinations of data input and legend for yield maps (numerical data for simulations #12-#21 are in Table 8.2) ... 150

8.3 Simulated daily soil moisture deficit in sand, clay loam and clay cells for strategies that use weather, soil and plant data for model calibration and: (a) target soil moisture deficit (simulation #20); and (b) maximise square count (simulation #21) ... 151

8.4 Simulated daily square count in sand, clay loam and clay cells for strategies that use weather, soil and plant data for model calibration and: (a) target soil moisture deficit (simulation #20); and (b) maximise square count (simulation #21) ... 152

8.5 Yield output of model predictive control strategy with variable-rate irrigation machine and legend for yield maps (numerical data for simulations #22-#31 are in Table 8.3) ... 156

8.6 Irrigation volumes applied to sand, clay loam and clay cells for simulations #25 and #28 to evaluate effect of rainfall during crop season; the model predictive controller optimised IWUI with 250 kg/ha of available nitrogen and for crop season with: (a) no rainfall; and (b) 302 mm of rainfall as per Figure 5.2 ... 157
8.7 Irrigation volumes applied to sand, clay loam and clay cells for simulations #26 and #29 to evaluate effect of nitrogen content; the model predictive controller optimised yield for crop season with no rainfall and available nitrogen of: (a) 120 kg/ha; and (b) 250 kg/ha

8.8 Yield output of model predictive control strategy with variable-rate irrigation machine and legend for yield maps (numerical data for simulations #32-#37 are in Table 8.4)

9.1 Control performance with constant and ±20% and ±50% variability in the rainfall for: (a) yield; and (b) crop water use efficiency; where error bars indicate the standard error and matching uppercase letters indicate no significant difference between the simulations

9.2 Weather profile used in iterative learning, iterative hill climbing and model predictive control strategies

9.3 PAWC variability maps of the lateral move irrigated fields that were simulated for: (a) iterative learning and model predictive control; and (b) iterative hill climbing control; and (c) zones for the iterative hill climbing control strategy simulated on the lateral move irrigated field derived from the PAWC variability data of Figure 9.3(b)

B.1 Averaged sensitivity indices of simulated soil moisture response to OZCOT input parameters

B.2 Averaged sensitivity indices of simulated leaf area index response to OZCOT input parameters

B.3 Averaged sensitivity indices of simulated square count response to OZCOT input parameters

B.4 Averaged sensitivity indices of simulated boll count response to OZCOT input parameters

C.1 Plant height sensor on cotton row in trial site

C.2 Schematic diagram of plant height sensor circuit using infrared distance sensor (Sharp GP2D12) and reed switch to determine distance traversed in field

C.3 Comparison of plant height measured manually and with sensor and 1:1 line

C.4 Example variation in readings from plant height sensor for 10 replicates of 75 metres of the field (average standard deviation = 24 mm)

C.5 Variable-rate nozzle constructed
| C.6 | Schematic diagram of variable-rate nozzles controller circuit using servos and reed switch attached to the irrigation machine to determine distance traversed in field | 251 |
| C.7 | Distribution of irrigation application on irrigation machine for low, medium and high irrigation treatments | 252 |