Defining Precision Irrigation

Rod Smith

National Centre for Engineering in Agriculture &
Cooperative Research Centre for Irrigation Futures
University of Southern Queensland
Goal
to provide guidance to the irrigation industry on the application of Precision Irrigation (PI) and associated technologies.

Funded by National program for Sustainable Irrigation (NPSI)
Project outcomes

• an agreed conceptualisation and definition of precision irrigation,

• an indication of the opportunities and likely success of adapting current application systems to precision irrigation,

• case studies where PI is being implemented in whole or part, and

• an evaluation of the likely or potential benefits from precision irrigation, and

• a clear direction for future research in precision irrigation.
‘ Precision irrigation is: the accurate and precise application of water to meet the specific requirements of individual plants or management units and minimize adverse environmental impact. ‘

Precision irrigation is:

- is the optimal management of irrigation spatially and temporally;
- is holistic, combining seamlessly the optimal performance of the application system with the crop, water and solute management;
- is not a specific technology, it’s a way of thinking;
- is adaptive, it’s a learning system; and
- is applicable to all irrigation application methods.
Precision irrigation cycle

Precision irrigation is adaptive control
Components of PI

Essential
- measurement & simulation tools for evaluation & optimisation of the application system;
- sensing & decision support tools for irrigation management (i.e., irrigation scheduling); and
- an effective control & response mechanism.

Optional
- Spatially & temporally varied applications (flexible) or management zones (fixed)
- Automation
- Informatics (information & communication technologies)
- Machine based &/or real-time control

Wireless infield and whole farm networking
Traditional surface irrigation (automated or manual)
Smart automated surface irrigation
Surface irrigation as PI
Surface irrigation as PI
Spatial scales are a function of the scales associated with:

- the application system;
- the control system;
- sensing; and
- decision support simulation.

These scales are not equal and no requirement for any one to be greater or smaller than any other.
Minimum spatial scales of common irrigation systems

<table>
<thead>
<tr>
<th>System</th>
<th>Spatial Unit</th>
<th>Order of magnitude of spatial scale (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface - furrow</td>
<td>single furrow</td>
<td>1000</td>
</tr>
<tr>
<td>Surface - furrow</td>
<td>set of furrows</td>
<td>50000</td>
</tr>
<tr>
<td>Surface - bay</td>
<td>bay</td>
<td>10000 to 50000</td>
</tr>
<tr>
<td>Sprinkler - solid set</td>
<td>wetted area of single sprinkler</td>
<td>100</td>
</tr>
<tr>
<td>Centre pivot, lateral move</td>
<td>wetted area of single sprinkler</td>
<td>100</td>
</tr>
<tr>
<td>LEPA - bubbler</td>
<td>furrow dyke</td>
<td>1</td>
</tr>
<tr>
<td>Travelling irrigator</td>
<td>wetted area of sprinkler</td>
<td>5000</td>
</tr>
<tr>
<td>Drip</td>
<td>wetted area of an emitter</td>
<td>1 to 10</td>
</tr>
<tr>
<td>Micro-spray</td>
<td>wetted area of single spray</td>
<td>20</td>
</tr>
</tbody>
</table>
Key Conclusion

• No PI systems operational
• Many of the component systems, practices, tools and technologies available
• Integration is the research imperative