Development and Characterisation of a Chemical Film Actinometer with a Large Dynamic Range for Measurements of Solar Ultraviolet Exposure

A Dissertation Submitted by

R.A. Lester, BSc(Hons)

For the Award of

Master of Philosophy

2009
Declaration

The research contained in this dissertation is the full documentation of the research results that were published as

I declare that this dissertation is comprised entirely of my own research (except where due acknowledgement is made), and no part of this dissertation has been written by another person. To the best of my knowledge, the work presented here is original and has not been published elsewhere other than in the reference stated above. This dissertation contains no material that to any substantial extent resembles work previously submitted for any other award at the University of Southern Queensland or any other educational or academic institution. All contributions to this dissertation and the research within are explicitly acknowledged.

Rick Lester

Signed ...

06/04/09
Acknowledgements

I wish to acknowledge the various contributions made to this project by a number of members of staff of the Faculty of Sciences at the University of Southern Queensland.

My Principle Supervisor, Dr Alfio Parisi (now Assoc Prof) initiated the concept for the project, provided supervision and training in a number of areas relating to ultraviolet physics, assisted with the assembly of experiments, and contributed substantially to the proof reading and editing of documents relating to this project.

Dr Jeff Sabburg made valuable contributions to experimental design and provided advice on error analysis, and also contributed to proof reading and editing. As an Associate Supervisor, Dr Michael Kimlin (now Assoc Prof) provided guidance for the casting aspect of the pilot study and also assisted in proof reading and editing during the early stages of the project. Prof John Mainstone, also an Associate Supervisor, contributed to project discussions and proof reading, and Dr Brad Carter took on the role of Associate Supervisor during the final stage of the project.

Dr Tania van den Ancker and Dr Ray Marshall provided essential workspace in the chemistry laboratory, assisted with the chemistry equipment required for the casting of chemical films, and also contributed to discussions relating to the photochemical nature of various actinometer materials.

Mr Graham Holmes provided technical assistance and provided a valuable support in equipment maintenance and repairs throughout the project, and also played a pivotal role in problem solving related to experimental logistics. Mr Pat McConnell also assisted with experimental apparatus.

Mr Oliver Kinder designed and constructed a number of precision mechanisms required for experimental work, and provided much needed technical assistance with these and other experimental devices, as well as repairs and maintenance. Although Mr Ken Mottram retired before the beginning of this project, I would like to thank him for the interesting discussions and moral support in the lead up to this project.
In addition, the Faculty of Sciences at the University of Southern Queensland financed the project by means of a research scholarship, and also provided the equipment and resources necessary for this project. I am grateful to, and thank all of those who have contributed and supported this research.
Abstract

Solar ultraviolet (UV) radiation arriving at the Earth’s surface is a biological requirement for most forms of life, but also causes adverse responses in humans, animals and plants in cases of overexposure. Many of the adverse responses are cumulative in nature, and hence solar UV related environmental risk assessment requires quantification of long-term exposures and large UV doses.

Dosimetry methods for quantifying solar UV radiation exposure are extremely versatile and cost-effective compared to radiometric methods, and allow time integrated doses to be quantified efficiently. Biodosimetry often provides a large dynamic range, but is expensive, labour intensive and time consuming. Chemical actinometry is a cost and labour effective alternative to biodosimetry, but is disadvantaged for large-dose measurements by its relatively small dynamic range.

Poly(dimethyl phenylene oxide) (PPO) film was identified from the literature as a chemical actinometer material with the potential to reduce the labour and costs involved in the quantification of large solar radiation doses by means of a larger dynamic range. A fabrication technique for PPO film actinometers was established, and the optical properties of the actinometers were fully characterised.

The resulting actinometer provides an efficient method for quantifying either unweighted UVB dose or biologically effective dose. The spectral response resembles the erythemal action spectrum, and the solar erythemal calibration function is near linear. The PPO film actinometer is therefore very well suited to human exposure research, especially for evaluation of chronic responses, or cumulative acute responses in which large-dose measurements are required.

The PPO film actinometer now provides an additional tool in the quantification of solar UV radiation exposure. It has equal versatility, and similar costs, labour and equipment requirements to the most commonly employed actinometry methods. The larger dynamic range of PPO film however, reduces labour and costs associated with large-dose UV measurements.
Contents

Declaration .. ii
Acknowledgements .. iv
Abstract .. vi
Contents .. vii
List of Figures ... xi
List of Tables ... xv

Chapter 1: Introduction ... 1
1.1 Introduction ... 2
1.2 Definitions and Terminology .. 4
1.3 Project Objectives ... 5
1.3.1 Literature Search for a Suitable Dosimeter Material ... 6
1.3.2 Fabrication of PPO Film ... 6
1.3.3 Investigation of PPO Film Thickness and Dose-Response ... 7
1.3.4 Quantification of the Optical Properties of PPO Film Actinometers .. 7
1.3.5 UV Radiation Calibrations .. 7
1.4 Dissertation Overview .. 7
1.5 Summary .. 8

Chapter 2: Responses of Biological Systems to Solar UV Radiation ... 10
2.1 Introduction ... 11
2.2 Molecular and Cellular Level Responses in Humans ... 12
2.2.1 DNA and Cellular Damage ... 12
2.2.2 DNA Repair Mechanisms ... 12
2.2.3 Mutation of the p53 Tumour Suppressor Gene ... 13
2.3 Organism Level Responses in Humans .. 14
2.3.1 Dermal Responses ... 14
 • Vitamin D Synthesis ... 14
 • Erythema and Sunburn ... 14
 • Sun-Tanning ... 15
 • Skin Cancer ... 15
2.3.2 Ocular Responses .. 18
Chapter 5: Evaluation of Currently Available Dosimeters for Large-Dose UV Measurements

5.1 Introduction .. 51
5.2 Biodosimetry .. 52
 5.2.1 Vitamin D, Iodouracil, and DNA ... 52
 5.2.2 Bacillus Subtilis ... 52
 5.2.3 Uracil Thin Layer ... 53
5.3 Actinometry ... 53
 5.3.1 Chemical Solution Actinometers ... 54
 5.3.2 Polysulphone Film ... 54
 5.3.3 Dyed Polyvinyl Alcohol and Polyvinyl Butanol Films 55
 5.3.4 Photosensitised Polyvinyl Chloride Films .. 56
 5.3.5 Poly(Dimethyl Phenylene Oxide) Film .. 57
5.4 Summary and Conclusions ... 60

Chapter 6: Physical Development and Optical Characterisation of Poly(Dimethyl Phenylene Oxide) Film Actinometers

6.1 Introduction ... 63
6.2 Equipment and Instrumentation .. 63
 6.2.1 Casting Table ... 63
 6.2.2 UV Radiation Sources ... 65
 6.2.3 Irradiance Measurements and Calculations ... 69
 6.2.4 Optical Absorbance Measurements and Calculations 75
6.3 Physical Development and Actinometer Fabrication ... 75
 6.3.1 General Development Procedure ... 75
 6.3.2 PPO Film Quality and Durability .. 76
 • Film Thickness .. 77
 • Mixing Ratio and Chloroform Evaporation Rate .. 77
 6.3.3 Film Thickness Measurements ... 78
6.4 Optical Characterisation of PPO Film Actinometers ... 80
 6.4.1 Effects of Mixing Ratio and Film Thickness on Dose-Response 80
 • Mixing Ratio .. 80
 • Film Thickness ... 83
List of Figures

Figure 2.1: Incidence rates of cutaneous malignant melanoma for Australia, the United States and the United Kingdom diagnosed in males (○), females (×), and both males and females (●). The data for this chart were obtained from the National Statistics Clearing House (nschdata.org), the Australian Institute of Health and Welfare (aihw.gov.au), and the Surveillance, Epidemiology, and End Results Database (seer.cancer.gov). ... 17

Figure 2.2: Solar spectral UV irradiance (a) (left axis) and erythemal spectral irradiance (b) (left axis) on a horizontal plane. The solar irradiance was measured in Toowoomba at a solar zenith angle of 44°. The erythemal spectral irradiance is calculated from the product of the solar spectral irradiance and the CIE erythemal action spectrum (CIE 1987) (c) (right axis).. 23

Figure 2.3: Action spectra for biological responses including human erythema (CIE 1987), vitamin D synthesis (MacLaughlin, Anderson, & Holick 1982), previtamin D3 synthesis (CIE 2006), actinic response (IRPA 1989), DNA damage (Setlow 1974), photoconjunctivitis (CIE 1986a), and photokeratitis (CIE 1986b). ... 24

Figure 5.1: A comparison of the spectral responses of several of the actinometer materials reviewed in this chapter. These include polysulphone (Diffey 1989), PVA/HPR-CN (Abdel-Rehim, Ebrahim & Abded-Fattah 1993), PVA/TTC and PVB/TTC (Ebraheem et al. 2000), and PVC/benoxaprofen (Diffey, Oliver & Davis 1982). The erythemal action spectrum (CIE 1987) is included for reference. .. 59

Figure 6.1: The polymer film casting table employed by physicists at the University of Southern Queensland for the fabrication of various chemical films for use in UV actinometry. ... 64

Figure 6.2: Relative spectral distributions of the fluorescent UV lamp (a), the irradiation monochromator at various UV wavebands of 4.4 nm FWHM
bandwidth \((b)\), the solar UV simulator \((c)\), and natural solar UV radiation \((d)\).

Figure 6.3: The irradiation monochromator at the University of Southern Queensland’s physics laboratory. The lamp housing is seen toward the rear of the instrument and the monochromator is toward the front. A PPO film actinometer is held in front of the output aperture by a retort stand for irradiation with monochromatic UV.

Figure 6.4: Average relative transmission spectrum \(T(\lambda)\) of cellulose acetate film for an 8 h broadband exposure \((272 \text{ kJ m}^{-2})\) to the fluorescent UV lamp.

Figure 6.5: Spectral sensitivity of the Solar Light 501 UV-biometer (solid curve) normalised to the maximum sensitivity at 293 nm compared to the CIE erythemal action spectrum (dashed line) \((\text{CIE 1987})\).

Figure 6.6: An actual size PPO film actinometer displayed on a blue background (left) and the PPO film actinometer schematic (right).

Figure 6.7: Dose-response comparison for 20 \(\mu\text{m}\) PPO film cast using mixing ratios of 0.06 (dashed curve) and 0.12 (dotted curve). The relative difference between the responses at the two mixing ratios is given by the solid curve (right axis). The error bars represent an estimated 6% error in the response due to film thickness variations, timing errors, and lamp alignment errors.

Figure 6.8: Dose-response curves (left axis) resulting from the broadband UV exposure of PPO films of thicknesses 15 \(\mu\text{m}\) \((a)\), 20 \(\mu\text{m}\) \((b)\), 40 \(\mu\text{m}\) \((c)\), 50 \(\mu\text{m}\) \((d)\) and 60 \(\mu\text{m}\) \((e)\). The dashed curve represents the relative difference between the \(\Delta A(340 \text{ nm})\) of 15 \(\mu\text{m}\) and 60 \(\mu\text{m}\) films (right axis). The error bars represent an estimated 6% error in the response due to film thickness variations, timing errors, and lamp alignment errors.
Figure 6.9: Optical absorbance spectra of 40 µm PPO film samples after exposure to broadband UV doses of 17 kJ m$^{-2}$ (a), 272 kJ m$^{-2}$ (b), 544 kJ m$^{-2}$ (c), 1223 kJ m$^{-2}$ (d), and 2310 kJ m$^{-2}$ (e).

Figure 6.10: Reproducibility of broadband UV doses in terms of the coefficient of variation (CV) as a function of dose (●). The dashed curve represents the least squares regression $y = 1.1647x^2 - 0.4618x + 3.1$ fitted to the CV data ($R^2 = 0.947$). The calibration curve (○) employing the mean ΔA(320 nm) at each dose is included for reference.

Figure 6.11: Effect of temperature during exposure on the UV induced response of 40 µm PPO film actinometers from 1.5°C to 50°C. The x-error bars indicate the uncertainty in temperature during the exposure, and the y-error bars are based on a 6.6% CV predicted by equation 6.7.

Figure 6.12: Fluorescent UV lamp calibration curves for broadband UV dose (◇), UVB dose (×), UVA dose (○), erythemal dose (●), and photokeratitis weighted dose (■). Solid lines are scaled against the left axis while dashed lines are scaled against the right axis. The error bars represent the CV as estimated for each ΔA(320 nm) by equation 6.7. The error bars are identical for all calibration curves.

Figure 6.13: Reciprocity result for 40 µm PPO film actinometers exposed to a broadband dose of 1.9 MJ m$^{-2}$. The ΔA(320 nm) (●) is plotted against the irradiance required to administer a dose of 1.9 MJ m$^{-2}$ over the given exposure time period (○) (right axis). The x-error bars indicate the estimated 10% error associated with measurements of irradiance, and the y-error bars indicate a CV ranging from 3.3% to 4.5% predicted by equation 6.7 for each ΔA(320 nm) response.

Figure 6.14: Experimentally determined spectral response of 40 µm PPO film shown on logarithmic (solid curve, left axis) and linear (dotted curve, right axis) scales. The response is normalised to the maximum response that occurs at 305 nm. The y-error bars represent the reproducibility of 8.8% for this experiment. The x-error bars indicate the 4.4 nm FWHM of each
exposure waveband. The spectral response of polysulphone film (left axis) and the erythemal action spectrum (left axis) are included for comparison.

Figure 6.15: The angular response of 40 μm PPO film actinometers in the azimuth plane (○) and the altitude plane (●) (central axis), and the cosine error (×) for each angle (right axis). Three repeated measurements were made at 45° of altitude (□) to provide an estimate of the reproducibility of about 4% for this experiment, as indicated by the error bars.

Figure 6.16: Solar erythemal exposure calibration curve of 40 μm PPO film actinometers. The curve represents the third order cubic regression (equation 6.12). The three open circles represent the data points that occur within the region of optical saturation as they deviate substantially from the regression line. The y-error bars show the uncertainty of about 10% in the UV-biometer measurements, and the x-error bars represent the CV of the response ranging from 3% to 12.4% as estimated by equation 6.7.

Figure 6.17: Dark reaction of 40 μm PPO film actinometers stored at temperatures of -16°C (a), 2°C (b), 24°C (c), and 40°C (d) after exposure to a broadband dose of 729.5 kJ m⁻². The dashed curves represent power curve regression lines for temperatures of 24°C and 40°C.

Figure 6.18: Dependence of the dark reaction of 40 μm PPO film actinometers on dose. The percent change in ΔAₐₑ₉(320 nm) is plotted against the ΔA(320 nm) response induced by the broadband doses given in table 6.5. The ΔAₐₑ₉(320 nm) was determined at post-exposure times of 22.5 h (a, ×), 49.5 h (b, ●), 72 h (c, ■), 104 h (d, △), 176.5 h (e, ○), and 493.5 h (f, □). The curves represent least squares linear regressions.
List of Tables

Table 6.1: Results of the feeler gauge leaf thickness measurements made using the optical wedge interference technique to test the accuracy of PPO film thickness measurements using this method. ... 79

Table 6.2: Response measurements of 40 μm PPO film actinometers after exposure at six temperature levels. ... 91

Table 6.3: Fluorescent UV lamp irradiances for various UV wavebands and biological weightings, and the ratio A of the irradiance of a given waveband or weighting to the broadband UV irradiance. ... 96

Table 6.4: Distances, measured irradiances and calculated exposure times used in the time-irradiance reciprocity experiment. ... 97

Table 6.5: Post-exposure times and response measurements of 40 μm PPO film actinometers after four different broadband UV doses. .. 111