Quantitative PCR and Histopathological Assessment of Cereal Infection by *Fusarium pseudograminearum*.

by

Noel Liam Knight, BSc (Hons)

A dissertation submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

2011
Certificate of Originality

I certify that the experimental work, results, analyses and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. The text of this thesis contains no material which has been accepted for the award of any other degree or diploma in any University, unless stated. To the best of my knowledge, the text of this thesis is original and contains no material previously published or written by another person, except where due reference is made.

I gratefully acknowledge the financial support of the Grains Research and Development Corporation and the assistance of an Australian Post-graduate Award Scholarship.

___ ______________
Signature of Candidate Date

ENDORSEMENT:

___ ______________
Signature of Supervisor Date
Acknowledgments

A PhD is a challenge, an adventure to be embarked upon. It is a test of mental strength, endurance and resolve. In a world of so much, a PhD encompasses relatively little, yet it becomes your life, your world. It represents your sacrifices, your enthusiasm, your highs and lows, your successes and failures, your strengths and weaknesses. A PhD represents work predominantly done alone, however it cannot be achieved alone. For this I must firstly thank my supervisor Professor Mark Sutherland, a source of not only funding, but of guidance, encouragement, wisdom and opportunity. I greatly appreciate the rigorous and thorough thought behind our discussions and the many opportunities I have been given to present my work and interact with other researchers from around the world.

I would also like to thank my associate supervisor Dr. Anke Lehmensiek for advice and discussion during my project. Without such a learned and patient teacher my project would have been a much more daunting challenge. Thanks also go to my associate supervisor Dr. Damian Herde, whose willingness to share experimental material and provide plant materials from field trials is greatly appreciated.

I would also like to thank my colleagues and fellow students at USQ who have at least been a part of this journey. In particular, Bill and Jess Bovill, for encouragement and advice during the uncertain first year of my PhD, Cassandra Percy for advice and discussion on all things crown rot, Philip Davies (University of Sydney) for supplying *Fusarium* isolates and always demonstrating the power of positivity, Garth Marrett for instructing me on use of the fluorescence microscope and Peter Gous for listening to me for so many weeks listing potential problems with my PCR.

To my parents I owe so much, for their financial support through all my studies and particularly for their encouragement, interest and belief in me. Having such role models of hard work and determination has shaped me into the person I am. I cannot put into words my appreciation for all you have given me.

And finally, my best friend, one who is like me in so many ways, who appreciates me for who I am no matter what, my dog Fungis. The amount of talking about my PhD he had to endure is beyond the ability of most people, however a sigh from him would always bring a smile. Thanks.
Abstract

The assessment of crown rot (F. pseudograminearum) infections in winter cereals was explored using a quantitative polymerase chain reaction (PCR) approach. A range of cereal genotypes of varying resistance to crown rot were monitored during seedling and adult growth stages. A histopathological investigation of F. pseudograminearum (Fp) growth during pathogenesis in seedling and adult growth stages was also performed across a range of cereal genotypes. This utilised a novel staining method developed during this project.

Visual assessment of crown rot symptoms in wheat seedlings is commonly conducted in order to rapidly identify resistant genotypes. Ratings rely heavily on discolouration of seedling tissues, predominantly the leaf sheaths. This study is the first to explore the relationship between seedling tissue discolouration and Fp DNA content in wheat genotypes of differing resistance. The partially resistant wheat 2-49 exhibited lower visual and qPCR values than the susceptible wheat Puseas. The rate of disease development and Fp growth in seedling leaf sheaths was slower in 2-49 than Puseas. The rates of symptom development in intermediate genotypes EGA Wylie and EGA Gregory were not significantly different from that recorded in 2-49. A comparison of visual ratings and qPCR values of Fp DNA indicated a strong correlation (r = 0.89, p < 0.01) between these characters at 14 days after inoculation across all genotypes. The correlation weakened over time. Furthermore, qPCR revealed differences between partially resistant and susceptible genotypes to a much greater extent than possible using visual discolouration.

Crown rot infections of adult cereal stems are typically rated at maturity by recording the amount of discolouration on individual internodes. A comparison was performed between visual ratings and Fp DNA content of four cereal genotypes (two bread wheats, one durum wheat and one barley) at anthesis (16 weeks after planting) and maturity (22 weeks after planting). At anthesis a strong correlation (r = 0.86, p < 0.01) was present between visual and qPCR values. At maturity this relationship was modest (r = 0.58, p < 0.01). Furthermore, differences between partially resistant and susceptible genotypes were greatest at anthesis.

The strong correlations between visual discolouration and fungal DNA content indicate that visual discolouration is a useful measure of fungal load in
seedling and adult cereal tissues. However, the degree to which these two parameters correlate varies with the time elapsed since tissue infection.

Fluorescence microscopy revealed no major differences between fungal growth patterns or structural characteristics in the host genotypes assessed. Leaf sheaths were most frequently penetrated via stomata, indicated by initial lesions forming at the guard cells. Leaf sheath tissues became extensively colonised in most cell types, except for the vascular bundles and abaxial silica cells. Colonisation of leaf sheaths resulted in the re-emergence of hyphae and occasionally conidiophores from stomata.

Colonisation of culm tissues frequently originated in the parenchymatous hypoderm, which became greatly discoloured, resulting in the visual discolouration used for disease rating. Early infection of pith parenchyma cells was also frequent. Infections typically spread from the culm base upwards through the tissues, typically only to internode three, with a much slower lateral spread of hyphae. Colonisation of sclerified cells occurred later in the infection process. Vascular tissues were frequently colonised by anthesis. This was more rapid in susceptible genotypes. Occlusion of large xylem vessels was rare during moderate infections.

The ability of quantitative PCR to accurately describe the extent of crown rot infection suggests that it could be utilised as a powerful technique for detecting new resistance sources or for identifying quantitative trait loci for resistance. This method, along with further microscopic and biochemical assessments of partially resistant and susceptible genotypes, may provide new information on the pathogenesis of crown rot and the nature of host resistance responses.
Table of Contents

CERTIFICATE OF ORIGINALITY .. II
ACKNOWLEDGMENTS .. III
ABSTRACT .. IV
LIST OF FIGURES .. IX
LIST OF TABLES .. XI
LIST OF ABBREVIATIONS .. XII

CHAPTER 1 : LITERATURE REVIEW ... 1

1.1 INTRODUCTION .. 1
1.2 WHEAT .. 1
 1.2.1 Anatomy .. 3
 1.2.2 Growth Cycle .. 4
 1.2.3 Diseases ... 5
 1.2.3.1 Foliar and Head Diseases .. 5
 1.2.3.2 Root and Crown Diseases .. 5
1.3 CROWN ROT ... 6
 1.3.1 Economic Impact in Australia ... 6
 1.3.2 Crown Rot Distribution ... 6
 1.3.3 History .. 7
1.4 FUSARIUM GENUS .. 8
 1.4.1 Fusarium pseudograminearum ... 9
 1.4.1.1 Genetic Diversity Studies .. 9
 1.4.1.2 Use of Genetic Information ... 11
1.5 ASPECTS OF CROWN ROT DISEASE .. 12
 1.5.1 Disease Cycle .. 12
 1.5.2 Host Range .. 12
 1.5.3 Disease Symptoms .. 13
 1.5.3.1 Mycotoxins and Infection .. 14
 1.5.4 Environmental Conditions Affecting Infection ... 14
 1.5.4.1 Temperature ... 15
 1.5.4.2 Water .. 15
 1.5.4.3 Whitehead Formation .. 17
 1.5.5 Management .. 18
1.6 SCREENING FOR CROWN ROT INFECTION AND YIELD LOSS .. 19
 1.6.1 Adult Screening .. 20
 1.6.2 Seedling Screening .. 21
1.7 DISEASE REACTIONS .. 23
 1.7.1 Resistance ... 23
 1.7.2 Crown Rot Resistance .. 24
 1.7.2.1 Genetics of Resistance .. 25
1.8 ESTIMATING FUNGAL LOAD .. 26
 1.8.1 Traditional Quantification Method ... 27
 1.8.2 DNA Based Quantification .. 27
 1.8.2.1 Real-Time Quantitative Polymerase Chain Reaction ... 28
 1.8.2.2 Species-specific qPCR ... 29
1.9 FUNGAL MICROSCOPY ... 31
 1.9.1 Fusarium Microscopy .. 32
1.10 PROJECT RATIONALE ... 33

CHAPTER 2 : SEEDLING INFECTION ... 37

2.1 INTRODUCTION .. 37
2.2 METHODS ... 38
CHAPTER 4 : HISTOPATHOLOGICAL ASSESSMENT OF INFECTED SEEDLING AND ADULT TISSUES 88

4.1 INTRODUCTION .. 88
4.2 METHODS ... 89
4.2.1 Conidial Germination .. 89
4.2.2 Plant Materials ... 90
4.2.3 Plant Growth and Tissue Preparation .. 90
4.2.3.1 Greenhouse Plants .. 90
4.2.3.1.1 Leaf Sheath Tissues ... 90
4.2.3.1.2 Culm Tissues ... 90
4.2.3.2 Field Plants ... 90
4.2.3.3 Sectioning .. 91
4.2.4 Clearing and Fixation .. 91
List of Figures

Figure 1.1. Areas and intensity of wheat production within Australia during the 2000-2001 season................ 3
Figure 1.2. A, Seedling anatomy (Veseth, 1987). B, Culm anatomy (Knight and Quirk, 1994)...................... 4
Figure 1.3. qPCR reaction using a dual-labelled probe, labelled with a reporter (R) and a quencher (Q)

molecule... 29
Figure 2.1. A, Normalised fluorescence curves of five 10 fold serial dilutions of F. pseudogloeospora DNA. B, Standard curve produced by plotting Ct against quantity of DNA in each standard
dilution... 49
Figure 2.2. Intra- and inter-assay variability of samples 38 and 94.. 49
Figure 2.3. Visual ratings of crown rot infection in LS1, LS2, LS3 and LS4 at (a) 7, (b) 14, (c) 21, (d) 28 and
(e) 35 dai... 52
Figure 2.4. Normalised Fp per wheat DNA values of LS1, LS2, LS3 and LS4 at (a) 7 dai, (b), 14 dai, (c) 21 dai,
(d) 28 dai and (e) 35 dai.. 53
Figure 2.5. Normalised Fp DNA per weight values of LS1, LS2, LS3 and LS4 at (a) 7 dai, (b), 14 dai, (c) 21
dai, (d) 28 dai and (e) 35 dai... 54
Figure 2.6. Combined LS1, LS2, LS3 and LS4 values from 7 to 35 dai using (a), visual ratings of crown rot
symptoms, (b), Fp per wheat DNA and (c), Fp DNA per weight... 55
Figure 2.7. Change in quantities of wheat DNA in control LS2 tissues and of both wheat and Fp DNA in
infected LS2 tissues of (a) 2-49, (b) Gregory, (c) Puseas and (d) Wylie from 7 to 35 dai.......................... 58
Figure 2.8. Relationship between combined LS1, LS2, LS3 and LS4 visual ratings of crown rot symptoms
and (a), Fp per wheat DNA or (b), Fp DNA per weight values at 14 dai of four wheat genotypes......... 59
Figure 2.9. Individual LS1, LS2, LS3 and LS4 qPCR and visual scores of crown rot symptoms at (a) 7, (b)
14, (c) 21, (d) 28 and (e) 35 dai...................................... 60
Figure 2.10. Weight difference of infected LS1, 2, 3, 4 and 5 from control LSs of (a) 2-49, (b) Gregory, (c)
Puseas and (d) Wylie from 7 to 35 dai. The weight of control tissues is represented by zero on the
vertical axis... 61
Figure 2.11. Linear relationships of the weight difference of Fp infected LS1, 2 and 3 from control LSs
and estimated weight of Fp tissues in (a) 2-49, (b) Gregory, (c) Puseas and (d) Wylie at 7 to 35 dai........ 63
Figure 2.12. (a) Visual ratings of crown rot symptoms and (b) Fp DNA per weight values of LSb, LSb, LB,
SCI and 1” root tissues of 2-49 and Puseas seedlings at 14 dai... 65
Figure 2.13. (a) Visual ratings of crown rot symptoms and (b) Fp DNA per weight values of LSb, LB and SCI
root tissues of 2-49 and Puseas seedlings at 28 dai... 66
Figure 2.14. (a) Visual ratings of crown rot symptoms and (b) Fp DNA per weight values of SCI, 1” root
and 2” root tissues of 2-49 and Puseas seedlings at 28 dai... 66
Figure 3.1. Visual ratings of crown rot symptoms (A and C) and qPCR values (B and D), of IN1, IN2 and IN3
of four cereal genotypes at 16 WAP (A and B) and 22 WAP (C and D)... 79
Figure 3.2. Combined visual ratings of crown rot symptoms and qPCR values, respectively, of IN1, 2 and 3
of four cereal cultures at 16 WAP (A and B) and 22 WAP (C and D)... 80
Figure 3.3. Combined visual ratings of crown rot symptoms of IN1, 2 and 3 of four cereal genotypes at
16 and 22 WAP.. 81
Figure 3.4. Combined qPCR values of IN1, 2 and 3 of four cereal genotypes at 16 and 22 WAP............... 82
Figure 3.5. Linear correlation of crown rot symptoms of visual ratings and qPCR values for combined
totals of IN1, 2 and 3 of four cereal genotypes at (a) 16 WAP and (b) 22 WAP................................. 83
Figure 3.6. (a), Visual ratings of crown rot symptoms and (b), qPCR values of IN1, 2 and 3 at of three
cereal genotypes at 16 WAP... 84
Figure 4.1. Effect of clearing, fixation and staining on 28 day old bread wheat leaf sheath tissues infected
by Fp. Cereal cell autofluorescence decreased after clearing and fixation. After staining with
solophenyl flavine 7GFGE, hyphae were visible but not distinct from plant tissues......................... 97
Figure 4.2. Infection of coleoptile tissues by Fp (SV).. 98
Figure 4.3. Penetration of leaf sheath tissues by Fp (SV)... 100
Figure 4.4. Association of Fp hyphae with trichomes (SV)... 101
Figure 4.5. Initial lesion formation in leaf sheath tissues (SV)... 104
Figure 4.6. Lesion formation and spread in leaf sheath tissues infected by Fp (SV)................................. 104
Figure 4.7. Reactions to initial infection by Fp resulting in the production of fluorescent materials (SV).... 105
Figure 4.8. Growth of *Fp* hyphae in discoloured stomata and trichomes (SV). .. 105
Figure 4.9. Dense colonisation of individual epidermal cells by *Fp* (SV). .. 106
Figure 4.10. Appressorial structures of *Fp* (SV), a, Hyphal swellings (HS) during contact with cell wall, 9 dai (W). .. 107
Figure 4.11. Cereal leaf sheath tissue anatomy. ... 108
Figure 4.12. Re-emergence of *Fp* hyphae from stomata on the abaxial surface of cereal leaf sheath tissue (SV). .. 110
Figure 4.13. Heavy colonisation of the abaxial surface of leaf sheath tissue by *Fp* (SV). .. 111
Figure 4.14. Masses of *Fp* conidia forming over stomata on the abaxial surface of leaf sheath 1 tissue of the wheat Puseas, 14 dai (SV). .. 112
Figure 4.15. Growth of *Fp* hyphae occurred in trichomes during heavy infection, while colonisation of senescent tissue appeared decreased (SV). .. 113
Figure 4.16. Restriction of *Fp* hyphal growth by vascular bundles (V) and associated stelar tissues, 14 dai (SV). .. 114
Figure 4.17. Sinous silica cells (SC), present only on the abaxial surface and which were most common in epidermal tissue adjacent to vascular tissues, displayed properties enabling them to resist *Fp* hyphal penetration (SV). .. 115
Figure 4.18. a and b, *Fp* hyphae within epidermal tissue adjacent to vascular bundles on the adaxial surface of a wheat leaf sheath frequently formed thickened hyphae (SV, P). .. 117
Figure 4.19. Cell types in cereal culm internode tissues (TS). ... 121
Figure 4.20. Stomata and vascular bundles in cereal internode tissues (TS). ... 121
Figure 4.21. General anatomy of cereal nodal tissue. .. 122
Figure 4.22. Initial lesions formation of internodal tissue could occur at stomata (SV). .. 124
Figure 4.23. Summary of culm infection by *Fp* at 10 WAP in four cereal genotypes. .. 125
Figure 4.24. Summary of culm infection by *Fp* at 16 WAP in four cereal genotypes. .. 126
Figure 4.25. Summary of culm infection by *Fp* at 22 WAP in four cereal genotypes. .. 127
Figure 4.26. Summary of culm infection by *Fp* at 16 WAP of 2-49 and Puseas grown at the LRC. 128
Figure 4.27. Summary of culm infection by *Fp* at 16 WAP of 2-49 and Puseas grown in the greenhouse. .. 129
Figure 4.28. *Fp* hyphae intracellularly colonised epidermal tissues (TS). ... 131
Figure 4.29. Parenchymatous hypoderm was colonised by intracellular *Fp* hyphae (TS). .. 132
Figure 4.30. Colonisation of the sclerenchymatous hypoderm by *Fp* (TS). ... 133
Figure 4.31. *Fp* colonisation of vascular tissues occurred in all cell types (TS). .. 136
Figure 4.32. Colonisation of phloem vessels by *Fp* in internode tissue (TS, B). .. 137
Figure 4.33. Infection of pith cells by *Fp* (TS). .. 138
Figure 4.34. Colonisation of the pith cavity by *Fp* (TS). ... 139
Figure 4.35. Colonisation of nodal tissue by *Fp* (TS). ... 140
Figure 4.36. Colonisation of cereal nodal tissues by *Fp*. ... 141
Figure 4.37. Series of sections rising through a lightly infected cereal node (TS). .. 142
Figure 4.38. Thick walled pith cells (TS). .. 143
Figure 4.39. a and b, Penetration of cell walls by *Fp* was facilitated by appressoria (a) appearing as swollen hyphal tips (TS, P and Sun, respectively). .. 144
Figure 4.40. Colonisation of leaf trace tissues by *Fp* (TS). ... 145
Figure 4.41. Summary of culm infection by *Fp* of green culms and dead culms at 16 WAP of the wheat genotype Sunland. ... 147
Figure 4.42. Summary of culm infection by *Fp* of green culms and dead culms at 16 WAP of the wheat genotype Vasco. .. 148
Figure 4.43. Colonisation of dead culm tissues by *Fp* (TS). ... 149
Figure 4.44. Colonisation of vascular tissues by *Fp* in dead culms (TS). .. 150
Figure 4.45. Colonisation of green culm tissues by *Fp* (TS). ... 151
Figure 4.46. Control and infected culm tissues of 2-49 (a-j) and Puseas (k-t) at 16 WAP. a-h/k-r, The fluorescence of the infected tissues was much less than the control tissues. .. 153
List of Tables

Table 2.1. Tissue sections harvested and analysed by qPCR ... 41
Table 2.2. F. pseudograminearum primer and probe sequences assessed for host specificity. 44
Table 2.3. Wheat primer and probe sequences assessed for host specificity ... 44
Table 2.4. Fusarium and cereal species assessed using the F. pseudograminearum and wheat primer/probe sets. .. 48
Table 2.5. Coefficients of determination (R^2) and associated gradients of the log of normalised F_p per wheat DNA values of combined LS1, 2, 3 and 4 over 7-28 DAI .. 56
Table 2.6. Coefficients of determination (R^2) and associated gradients of the log of normalised F_p DNA per weight values of combined LS1, 2, 3 and 4 over 7-35 DAI .. 56
Table 2.7. Correlation coefficients (r) for LS1, LS2, LS3 and LS4 separately and combined comparing visual ratings of crown rot symptoms, F_p per wheat DNA and F_p DNA per weight values from 7 to 35 DAI .. 57
Table 2.8. Difference in milligrams of F_p infected LS tissues from control LS tissues at 7 to 35 DAI for (a) 2-49, (b) Gregory, (c) Puseas and (d) Wylie .. 62
Table 3.1. Genotypes monitored during adult plant assessments and their crown rot field rating 74
Table 3.2. Correlation coefficients (r) for visual discolouration due to crown rot symptoms and qPCR values of individual and combined INs at 16 and 22 WAP ... 83
Table 3.3. Correlation coefficient (r) for visual discolouration due to crown rot symptoms and qPCR values of combined INs at 16 WAP .. 84
Table 4.1. Abbreviations used in figure captions. .. 94
Table 4.2. Mean and range of hyphal widths observed across leaf sheaths 1 to 4 of four wheat genotypes at 14 DAI ... 118
Table 4.3. Number of culms sectioned for microscopic assessment ... 123
Table 4.4. Minimum and maximum hyphal widths observed within the culm tissue of four cereal genotypes.. 135
List of Abbreviations

1°: primary
2°: secondary
Col: coleoptile
Cro: crown
Ct: threshold cycle
dai: days after inoculation
Fp: Fusarium pseudograminearum
hai: hours after inoculation
IN: internode
LB: leaf blade
LRC: Leslie Research Centre
LS: leaf sheath
LSb: base 2 cm of leaf sheath
LSt: top 2 cm of leaf sheath
NA: not applicable
PCR: polymerase chain reaction
PH: parenchymatous hypoderm
PP: pith parenchyma
qPCR: quantitative polymerase chain reaction
QTL: quantitative trait loci
SCI: sub-crown internode
SH: sclerenchymatous hypoderm
SNA: starch nitrate agar
VB: vascular bundle
Vis: visual discolouration
VP: vascular parenchyma
WAP: weeks after planting
Wh: wheat