UNIVERSITY OF SOUTHERN QUEENSLAND

LIFE CYCLE ENERGY USE AND GREENHOUSE GAS EMISSIONS OF AUSTRALIAN COTTON: IMPACT OF FARMING SYSTEMS

A dissertation submitted by

Borzoo Ghareei Khabbaz, B Eng (Bio System & Agric)

For the award of

Master of Engineering (MENG)

2010
ABSTRACT

Over the past two decades, the Australian cotton production practices have undergone considerable changes, including the introduction and widespread applications of Genetically Modified (GM) cotton varieties, and the clear trend towards conservation farming, better water use efficiency and sustainable production. In this project, the energy consumption and greenhouse gas emissions (GHG) of Australian cotton production chain – from field to the shipping port – is evaluated. Most of the Australian cotton is exported, and only 2% is milled locally for textile.

In this study, Life Cycle Assessment (LCA) framework for Australian cotton production is developed. An Excel-based software model is also implemented and used to calculate and profile the cotton production system energy consumption and greenhouse gas emissions. These include direct and indirect energy inputs for both on-farm and off-farm operations, as well as related soil emissions due to soil biological activities and the applications of nitrogen-based fertilisers. By analysing farm energy inputs separately for each farming practice, the developed model was demonstrated to reliably calculate total and individual energy consumption and greenhouse gas emissions for different operations, thus allowing for the comparison between different farming practices, and identifying more efficient and sustainable farming systems.

A farm survey was first conducted to gather necessary field data for the model inputs. The energy consumption and relevant greenhouse gas emissions for different
operations were subsequently calculated and profiled. In addition, sensitivity analysis was carried out to quantify the impacts of new technologies and improved farming practices.

The findings of fifteen case studies based on the available data at two surveyed farms (Bremner and Keytah) showed that for each bale of cotton delivered to the port, the total energy consumption was in 4.3 – 12.6 GJ/bale range, with an average of 10.1 GJ/bale. The related GHG emission was between 0.38 and 0.92 tonnes CO$_2$e/bale of cotton. The indirect on-farm energy use (mostly the embodied energy for the purpose of manufacturing farm fertiliser chemicals and machinery for use in cotton farming) was the most significant component (average 77%), consuming on average 7.7 GJ/bale. This was followed by direct on-farm energy consumption (11%). In comparison, the direct and indirect off-farm energy consumption and soil emissions were relatively low, around 8-9% and 2-3% respectively.

The energy consumption and GHG emissions of GM and conventional cotton were also compared. Based on the available data and 12 case studies (paddocks) at Bremner farms, it was found that conventional cotton farms on average consume 11.4 GJ of energy per bale, with related emissions of 0.83 tonnes CO$_2$e/bale. This is in comparison to the values of 10.0 GJ/bale and 0.83 tonnes CO$_2$e/bale for GM cotton that accounts for 80-90% of currently grown Australian cotton.

A comparison of the different irrigation system effects was carried out. Based on the available data and 12 case studies (paddocks) at Bremner farms, it was found that cotton farmed under furrow irrigation lead to higher energy consumption and
increased GHG emissions than those based on lateral move irrigation system. This is due to higher fertiliser application rates used in furrow irrigated farms that often lead to higher total energy consumption and GHG emissions, outweighing the energy efficiency of this system. It was found that on average, cotton farm under furrow irrigation requires 10.4 GJ/bale of energy with GHG emissions of 0.88 tonnes CO₂e /bale, compared to 8.7 GJ/bale and 0.86 tonnes CO₂e /bale for cotton produced by the lateral move irrigation method.

The effect of three different tillage systems – zero, minimum and conventional – was also compared. Based on the available data and three case studies at Keytah farms, it was found that on average, total energy consumption and GHG emissions were respectively 4.5, 4.52 and 4.7 GJ/bale, with corresponding GHG emissions of 0.38, 0.39 and 0.41 tonnes CO₂e /bale. Thus, it was found that zero tillage uses the least energy and emits the least GHG emission.

A comparative study conducted between cotton, wool and other chemical synthesis resulted in the finding that cotton is consuming the least energy (46.4 MJ/kg) compared to wool, acrylic, polypropylene, viscose, polyester and nylon.

Combining all the above studies, it was shown that when the cotton is produced with the “optimum” system – employing zero tillage practices in GM cotton field under lateral move irrigation – its total energy consumption and GHG emissions would be reduced to 4.3 GJ and 0.38 tonnes CO₂e per bale. This is a 57% reduction of the average energy use in current farming systems and is mainly due to less embodied energy per hectare associated with farm machinery capital (in Keytah farms).
This project highlights the great importance of reducing the chemical applications (particularly the nitrogen-based fertilisers) and direct energy consumption of cotton farming processes. This will assist the Australian cotton industry to a more sustainable path.
CERTIFICATION OF DISSERTATION

I certify that the ideas, experimental work, results, analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

CANDIDATE

Borzoo Ghareei Khabbaz

Date

ENDORSEMENT

SUPERVISOR

Dr Guangnan Chen

Date
ACKNOWLEDGEMENT

I would like to take this opportunity to thank all people who made this thesis possible in number of ways. I owe my deepest gratitude to the Cotton Research and Development Corporation (CRDC) and National Centre for Engineering in Agriculture (NCEA) which without their financial helps, this thesis was not possible.

It is an honour for me to have Dr. Guangnan Chen as my principal supervisor and Mr. Craig Baillie as an associate supervisor who put their best effort to support this study with their valuable academic advises. I am heartily thankful to my supervisor Dr. Guangnan Chen, whose encouragements, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

I would like to show my gratitude to the Faculty of Engineering and Surveying, University of Southern Queensland, Australia and its staff members who supported this thesis. Also thanks to Bremner and Keytah farms for their contributions in farm data collection.

I would like to thank my wife who has made her great support available all the time during my studies. Lastly, I offer my regards to all of those who supported me in any respect during the completion of the project.

Borzoo Ghareei Khabbaz
GLOSSARY

This glossary defines and clarifies the use of specific terms within this thesis.

Cotton

Bale

Unit of ginned cotton weighing 217.72 kilograms (480 lb) of lint.

GM cotton is genetically modified to control damage by insects and weed, aiming to reduce the herbicide and pesticide consumption.

Yield

The weight of harvested cotton crop per unit of area.

Energy, Climate Change, and Global Warming

Carbon footprint is the total amount of directly and indirectly produced GHG in support of human activities. It is usually expressed in tonnes of carbon dioxide equivalent (CO2-e).

Climate change is the term used to refer to changes in long-term environmental factor trends, such as temperature and rainfall. These changes can be due to natural variability or as a result of human activity.
Greenhouse gases

Greenhouse gases that contribute to global warming by absorbing solar radiation. The main contributors are carbon dioxide, methane, nitrous oxide and water vapour.

Carbon dioxide (CO₂)

A colourless, odourless and non-poisonous gas that is a natural constituent of the Earth’s atmosphere. Carbon dioxide is a product of fossil-fuel combustion and other processes. It is considered a greenhouse gas, as it traps heat (infrared energy) radiated by the Earth into the atmosphere and thereby contributes to the potential for global warming.

Energy

The capability of doing work; different forms of energy can be converted into other forms, but the total amount of energy remains the same.

Embodied energy

Embodied energy is defined as the commercial energy (fossil fuels, nuclear, etc) that was used in the work to make any product, bring it to market, and dispose of it. Embodied energy is an accounting methodology which aims to find the sum total of the energy necessary for an entire product lifecycle. This lifecycle includes raw material extraction, transport manufacture, assembly, installation, disassembly, deconstruction and/or decomposition.
Emissions

Natural and anthropogenic releases of gases to the atmosphere. In the context of global climate change, they consist of radiatively important greenhouse gases (e.g. the release of carbon dioxide during fuel combustion).

LCA

Life cycle assessment (LCA) is a process of compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.

LPG

The word LPG stands for Liquefied petroleum gas.

Farming and Tillage Practices

Zero tillage

Zero tillage (sometimes referred to as no-till farming) is a crop growing technique without disturbing the soil through tillage.

Minimum tillage

Minimum tillage is the minimum soil manipulation necessary for crop production. It is a tillage method that does not turn the soil over.

Conventional tillage

Conventional tillage refers to standard tillage operations for a specific location and crop that prepares land for planting and tends to bury the crop residues.
CTF (Controlled traffic farming)

Controlled traffic farming (CTF) is a management system which is used to reduce the damage to soils caused by heavy or repeated agricultural machinery passing on the land. Rather than “random” traffic in the field, the wheel tracks of all machinery operations are now confined to fixed paths.
Table of Contents

ABSTRACT ... i
CERTIFICATION OF DISSERTATION ... v
ACKNOWLEDGEMENT .. vi
GLOSSARY ... vii
LIST OF TABLES ... xiv
LIST OF FIGURES ... xvi

Chapter 1 – Introduction .. 1
 1.1 Project Background .. 1
 1.1.1 Concerns over Greenhouse Gas Emissions and Global Warming 1
 1.1.2 Carbon Labelling ... 1
 1.2 Problem Statements ... 2
 1.3 Project Aims .. 2
 1.4 Overall Project Methodology ... 4
 1.4.1 Life Cycle Assessment (LCA) Development .. 4
 1.4.2 Model Development .. 5
 1.4.3 Farm Surveys .. 6
 1.5 Expected Outcomes .. 6
 1.6 Outline of the Thesis ... 7

Chapter 2 - Overview of Cotton Industry and Practices in Australia 10
 2.1 Cotton Production Processes .. 10
 2.2 Cotton Production in Australia ... 14
 2.2.1 Brief History .. 14
 2.2.2 Cotton Growing Regions ... 16
 2.2.3 Farming Systems and Practices ... 17
 2.2.4 Cotton Variety .. 18
 2.2.5 Cotton Yields .. 20
 2.2.6 Postharvest and Distribution ... 20
 2.2.7 Research Organisations and Activities ... 22
 2.3 Conclusions .. 24

Chapter 3 - Literature Review ... 25
 3.1 Global Warming ... 25
 3.2 Sources of Greenhouse Gas Emissions from Agriculture .. 25
 3.3 Carbon Footprint .. 26
 3.4 Energy Consumption and Emissions of Cotton Production and Supply Chain 27
 3.5 Life Cycle Assessment for Energy Consumption and Emissions of Other Products and Systems .. 40
 3.6 Software Tools ... 46
 3.7 Conclusions .. 48

Chapter 4 - Model Development ... 49
 4.1 Introduction ... 49
 4.2 Life Cycle Assessment (LCA) Boundaries .. 51
Chapter 5 - Farm Survey Data

5.1 Data Collection Methods
- 5.1.1 Farmer Interviews .. 81
- 5.1.2 Interview Questionnaire Design 81
- 5.1.3 On-farm Direct Applications 82
- 5.1.4 On-farm Indirect Applications 83
- 5.1.5 Computer Based Data Collection Based on Farmers’ Records .. 84

5.2 Farm Surveys
- 5.2.1 Farm Number 1, Werrina Downs (Queensland, Australia) ... 85
- 5.2.2 Farm Number 2, Keytah Case Studies .. 98

5.3 Typical Cotton Farming Practices in Australia

5.4 Conclusions .. 102

Chapter 6 – Results of Case Studies

6.1 Introduction ... 103

6.2 Results of Case Studies
- 6.2.1 Results of Case Studies 1 – 12 104
- 6.2.2 Results of Case Studies 13 - 15 105

6.3 Energy Consumption of Conventional Cotton

6.4 Greenhouse Gas Emissions (GHG) of Conventional Cotton

6.5 Energy Consumption of Genetically Modified Cotton

6.6 Greenhouse Gas Emissions of Genetically Modified Cotton

6.7 Conclusions .. 118

Chapter 7 – Impact of Different Farming Systems and Practices

7.1 Comparison of GM and Conventional Cotton

7.2 Comparison of Australian and Overseas Conventional Cotton Energy Consumptions

7.3 Effect of Irrigation Methods and Water Use Efficiency Measures
- 7.3.1 Energy Consumption and Greenhouse Gas Emissions in Furrow Irrigation Systems 121
- 7.3.2 Energy Consumption and Greenhouse Gas Emissions of Lateral Move Irrigation Systems 122
- 7.3.3 Comparison of Furrow and Lateral Move Irrigation Cotton Production 122

7.4 Comparison of Energy Consumption and Greenhouse Gas Emissions of Different Tillage Practices
- 7.4.1 Zero Tillage Practices ... 123
- 7.4.2 Minimum Tillage Practices .. 123
- 7.4.3 Conventional Tillage Practices 124
- 7.4.4 Comparison between Different Tillage Practices .. 124

7.5 Comparison with the Wool and Chemical Synthesis Fibres
- 7.5.1 Comparison of Cotton vs. Wool 126
7.5.2 Comparison of Cotton with Polyester and Nylon 126
7.5.3 Comparison of Cotton with Acrylic, Polypropylene and Viscose 127
7.6 Reductions of Energy and GHG Emissions when all the “New Technologies”
 are Combined .. 128
7.7 Conclusions .. 128

Chapter 8 – Conclusions and Recommendations for Further Research 131
8.1 Effect of Cotton Farming Practices and Fertiliser Applications 132
8.2 Effect of Cotton Varieties .. 133
8.3 Effect of Irrigation Systems ... 133
8.4 Effect of Tillage Practices .. 134
8.5 Cotton vs. Wool and Chemical Synthesis Fibres .. 135
8.6 Maximum Energy and Greenhouse Gas Emissions Reduction 135
8.7 Recommendations and Further Research ... 135

References .. 137

Appendices ... 142
LIST OF TABLES

Table 2.1: Types of common genetically modified (GM) cotton .. 18
Table 2.2: Description of genetically modified cottons ... 19
Table 2.3: List of Australian cotton research organizations .. 22
Table 3.1: Planting, ginning and logistics energy share in cotton supply chain 30
Table 3.2: Greenhouse gas emissions of cotton and polyester T-shirt 31
Table 3.3: Greenhouse gas emissions of cotton and polyester T-shirt by production levels 32
Table 3.4: Energy consumption and the relative greenhouse gas emissions of different irrigation systems ... 34
Table 3.5: Fuel requirements of farming operations in different tillage systems, L/hectare 35
Table 3.6: Cropping system effects on greenhouse gas emissions 36
Table 3.7: Energy consumption of cotton for different countries 37
Table 3.8: Irrigation water requirement for Australian summer crops 38
Table 3.9: Energy consumption of various crops for different countries 44
Table 3.10: Energy consumption and emissions of different fuel types 44
Table 3.11: Energy consumption in production of fibre and fabric for different textile products ... 45
Table 4.1: Detailed activities for cotton on-farm direct applications 53
Table 4.2: Diesel and electricity conversion rates with relevant emissions 56
Table 4.3: Energy consumption and emissions from aerial spraying 59
Table 4.4: Energy and emissions conversion rates for different irrigation systems 60
Table 4.5: List of on-farm indirect applications covered by this study 62
Table 4.6: Energy consumption and emissions to manufacture fertilisers 65
Table 4.7: Energy consumption and emissions to manufacture cottonseeds 66
Table 4.8: Transport of chemicals and seeds energy coefficients and emissions conversion rates ... 67
Table 4.9: Tractor and farm implements production energy and emissions
Conversion rates .. 69
Table 4.10: Energy consumption and emissions of cotton trucking 71
Table 4.11: Energy consumption and emissions cotton ginning processes 72
Table 4.12: Energy consumption and emissions from heavy, light vehicle and motorbike production ... 74
Table 4.13: Energy consumption and emissions for building construction 75
Table 4.14: Energy consumption and emissions of lubricants consumption 76
Table 4.15: Soil emissions from tillage and nitrogen based fertiliser application 77
Table 5.1: List of chemicals and seed to calculate the usage amount in cotton farming 84
Table 5.2: Cotton varieties for each paddock in Bremner farms .. 86
Table 5.3: Fuel consumption rates by case study 1 ... 89
Table 5.4: List of machinery used in Case study 1 ... 90
Table 5.5: List of machinery used in case study 13 ... 100
Table 6.1: Energy and emissions values from the model for case study 1 104
Table 6.2: Energy and emissions values from the model for case study 13 106
Table 6.3: Energy and emissions values from the model for case study 14 107
Table 6.4: Energy and emissions values from the model for case study 15.............109
Table 7.1: Energy usage and emissions of different tillage practices.....................125
LIST OF FIGURES

Figure 1.1: Life cycle assessment framework .. 5
Figure 2.1: Cotton seasonal calendar ... 10
Figure 2.2: Furrow irrigation in cotton farm ... 12
Figure 2.3: Lateral move (Centre pivot) irrigation system in cotton farm 13
Figure 2.4: Gross and export value of Australian cotton by year from 1960-61 to 2006–07 .. 15
Figure 2.5: Cotton lint yields from 1960 to 2005 for Australia 16
Figure 2.6: Map of Australian cotton regions .. 17
Figure 3.1: Australian greenhouse gas emissions by sector in 2006 26
Figure 3.2: Price and yield increase relationship of irrigated summer crops 39
Figure 3.3: Cotton greenhouse gas calculator .. 46
Figure 3.4: ENERGYCALC software for assessment of cotton on-farm energy requirements .. 47
Figure 4.1: Developed life cycle assessment (LCA) of cotton farming: from field to the port .. 50
Figure 4.2: Aerial spraying .. 58
Figure 4.3: On-farm direct applications cover page of the developed model 61
Figure 4.4: The main page of the developed model ... 78
Figure 5.1: Bremner Farms Location, Dalby, Queensland, Australia 85
Figure 5.2: Keytah farms on Australian maps located at Moree, NSW 98
Figure 6.1: Energy consumption share for case study 1 105
Figure 6.2: Emissions share for case study 1 .. 105
Figure 6.3: Energy consumption share for case study 13 106
Figure 6.4: Emissions share for case study 13 ... 107
Figure 6.5: Energy consumption share for case study 14 108
Figure 6.6: Emissions share for case study 14 ... 108
Figure 6.7: Energy consumption share for case study 15 109
Figure 6.8: Emissions share for case study 15 ... 109
Figure 6.9: Energy Consumption Share of Conventional Cotton 111
Figure 6.10: Greenhouse Gas Emissions Share of Conventional Cotton 112
Figure 6.11: Energy Consumption Share of Genetically Modified (GM) Cotton .. 115
Figure 6.12: Energy consumption share through GM cotton life cycle 115
Figure 6.13: Greenhouse Gas Emissions Share of Genetically Modified (GM) Cotton .. 117
Figure 6.14: Greenhouse gas emissions share through GM cotton life cycle 117
Figure 7.1: Energy usage and emissions of different tillage practices 125
Figure 7.2: Energy consumption of cotton and other products from field to fabric (cotton data excludes milling) .. 127