Music use by exercisers and athletes has become commonplace. 

Introduction

Bishop and Dr David-Lee Priest

Karageorghis FBASES, Prof Peter C. Terry FBASES, Prof Andrew M. Lane FBASES, Dr Daniel T.

The Sport and Exercise Scientist

Background and evidence

Research conducted in the exercise domain prior to the mid-1990s was of variable quality and produced equivocal findings. This equivocality has been attributed to the lack of systematic methodology and the lack of a guiding theoretical framework (see Karageorghis). Researchers often misused musical terminology, operated poor music selection protocols, chose inappropriate measures and failed to standardise important aspects of experimental protocol, such as playing music at a consistent volume. Developments in conceptual understanding and standardisation of music selection (e.g., Karageorghis et al., 2006) have helped to rectify these limitations.

A corpus of research work has focused on identifying factors contributing to the motivational qualities of music; that is, qualities which stimulate or inspire physical activity. Following more careful attention to music selection by researchers, a range of benefits have been observed in the exercise domain that include an increase in attention to music selection by researchers, a range of benefits which stimulate or inspire physical activity; that is, qualities which promote performance-enhancing effects; that is, qualities which promote performance-enhancing effects.

These responses to music may, in turn, promote an ergogenic (work-enhancing) effect. This occurs when music improves exercise performance by either reducing perceptions of fatigue or increasing work capacity. Typically, this results in higher-than-expected levels of endurance, power, productivity or strength. Long-term benefits of music use have yet to be investigated thoroughly but are taken to include increased adherence to exercise programmes. This is especially pertinent to music use in medical rehabilitation settings in which exercise plays a role (e.g., physiotherapy, stroke, chronic pain, cardiac episodes; see Sedgwick & Good, 2006). Exploratory work has demonstrated the utility of music in these secondary care contexts where, owing to their condition, patients are in particular need of encouragement, affective enhancement, distraction and motivation.

Primary factors that influence responsiveness to music in exercise and sport settings are the musical qualities of rhythm, melody and harmony. Secondary factors include the extra-musical qualities of cultural impact (i.e., pervasiveness of the music within specific cultural groups or society generally) and associations that a piece of music may carry (e.g., Heather Small’s Proud is closely associated with the British team at the 2000 Sydney Olympics). The latest iteration of our conceptual model incorporates the influence of gender and personality. Research findings suggest that these variables play a role in determining musical preferences and responses within exercise settings. For example, males generally express a greater preference for bass frequencies compared to females (McCown et al., 1997), and extraverts respond more favourably than introverts to lively musical selections (e.g., Crust & Cough, 2006). Further, Hargreaves and North (2008) have identified situational factors as a key influence on effects of music, whereby exercisers engaged in repetitive, aerobic and anaerobic exercise tasks. Harmony reflects the affective response to music. Harmony is important for performance (e.g., happy, sad,ならずもの).

Within the tempo band of 125-140 beats per minute for most healthy exercisers engaged in repetitive exercise task. Harmony is important for performance (e.g., happy, sad,ならずもの).

The effects of reciprocal music on new beginning to receive research attention in the exercise domain.

References