Thermal behavior of MWNT-reinforced thermoplastic natural rubber nanocomposites

Mouda, A. Tarawneh
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia, moash20042000@yahoo.com

Sahrim Hj. Ahmad
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

Rozaidi Rasid
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

S.Y. Yahya
Institute of Sciences, Universiti Teknologi Mara, Malaysia

Kin-tak Lau
Center of Excellence in Engineered Fibre Composites, Faculty of Engineering and Surveying, University of Southern Queensland, Australia, Department of Mechanical Engineering, The Hong Kong Polytechnic University, China

Ing Kong
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

Se Yong Eh Noun
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

Abstract
This article studies the thermal properties of a multi-walled carbon nanotube (MWNT)-reinforced thermoplastic natural rubber (TPNR) nanocomposite. The nanocomposite was prepared using a melt blending method. Various percentages (1, 3, 5, and 7 wt%) of MWNTs were added into TPNR to improve its thermal properties. The laser flash technique was also employed to determine the thermal conductivity, thermal diffusivity, and specific heat capacity of the nanocomposite. The DMA result showed that the glass transition temperature (Tg) increased with the increase in MWNT content. TEM micrographs also demonstrated that a good dispersion of MWNTs was achieved in the TPNR environment.