Exploring the potential for dual vaccination against Hepatitis B virus and *Helicobacter pylori* using a recombinant virus like particle

M Kotiw, C Olive, M Johnson, M Pandy, S Fry, S L Hazell, H J Netter and M F Good

Centre for Systems Biology, University of Southern Queensland, Toowoomba Queensland Australia 4350

Queensland Institute of Medical Research, Herston, Queensland Australia 4006

Microbiology Department, Monash University, Clayton, Victoria Australia 3168

Hepatitis B virus (HBV) and the gastric bacterium *Helicobacter pylori* are human pathogens of global significance. Estimates suggest >50% of the world population is infected with *H. pylori*, with 10-20% developing serious sequelae. An effective vaccine for HBV is available and is composed of the small HBV envelope proteins (HBsAg) which are able to self-assemble into virus-like particles (VLPs). However, development of a *H. pylori* vaccine has been hampered by the lack of an effective delivery system and safe adjuvants. We explored co-vaccination strategies against HBV and *H. pylori* based on modified HBsAg VLPs. This approach may address *H. pylori* infections, which begin primarily in children, and the global ambition for universal vaccination of infants against HBV.

Methods: We inserted overlapping sequences (26-30aa) from the carboxy terminus of the *H. pylori* katA gene into the hydrophilic ‘a’ determinant region (at amino acids 127-128) of the HBsAg protein to create an expression system which guarantees surface orientation of inserted peptide sequences.

Results: VLPs containing KatA epitopes were produced and were able to induce KatA specific antibodies in vaccinated mice. Recombinant VLPs expressing KatA epitopes were tested in a mouse challenge model, of which three constructs induced a significant reduction in *H. pylori* bacterial load, as demonstrated by culture and histological examination of the gastric mucosa.

Discussion: HBsAg VLPs are highly immunogenic due to their particulate nature and repetitive sub-unit structure. We describe a novel delivery system which is also the first report of recombinant VLPs able to stimulate protective immune responses to a bacterial pathogen.