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Abstract

This thesis investigates improved estimators of the parameters of the linear

regression models with normal errors, under sample and non-sample prior in-

formation about the value of the parameters. The estimators considered are the

unrestricted estimator (UE), restricted estimator (RE), shrinkage restricted es-

timator (SRE), preliminary test estimator (PTE), shrinkage preliminary test

estimator (SPTE), and shrinkage estimator (SE). The performances of the es-

timators are investigated with respect to bias, squared error and linex loss.

For the analyses of the risk functions of the estimators, analytical, graphical

and numerical procedures are adopted.

In Part I the SRE, SPTE and SE of the slope and intercept parameters

of the simple linear regression model are considered. The performances of the

estimators are investigated with respect to their biases and mean square errors.

The efficiencies of the SRE, SPTE and SE relative to the UE are obtained. It

is revealed that under certain conditions, SE outperforms the other estimators

considered in this thesis.

In Part II in addition to the likelihood ratio (LR) test, the Wald (W) and

Lagrange multiplier (LM) tests are used to define the SPTE and SE of the

parameter vector of the multiple linear regression model with normal errors.

Moreover, the modified and size-corrected W, LR and LM tests are used in

the definition of SPTE. It is revealed that a great deal of conflict exists among

the quadratic biases (QB) and quadratic risks (QR) of the SPTEs under the

three original tests. The use of the modified tests reduces the conflict among

the QRs, but not among the QBs. However, the use of the size-corrected
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tests in the definition of the SPTE almost eliminates the conflict among both

QBs and QRs. It is also revealed that there is a great deal of conflict among

the performances of the SEs when the three original tests are used as the

preliminary test statistics. With respect to quadratic bias, the W test statistic

based SE outperforms that based on the LR and LM test statistics. However,

with respect to the QR criterion, the LM test statistic based SE outperforms

the W and LM test statistics based SEs, under certain conditions.

In Part III the performance of the PTE of the slope parameter of the

simple linear regression model is investigated under the linex loss function.

This is motivated by increasing criticism of the squared error loss function for

its inappropriateness in many real life situations where underestimation of a

parameter is more serious than its overestimation or vice-versa. It is revealed

that under the linex loss function the PTE outperforms the UE if the non-

sample prior information about the value of the parameter is not too far from

its true value. Like the linex loss function, the risk function of the PTE is also

asymmetric. However, if the magnitude of the scale parameter of the linex loss

is very small, the risk of the PTE is nearly symmetric.
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Chapter 1

Introduction

Linear regression models are used to represent the linear relationships between

the response or dependent variable and a set of explanatory variables or pre-

dictors. If appropriate, such a model can be used to predict the value of a

response variable for a set of known values of the predictors. For any such

prediction, estimation of the regression parameters, is essential. Estimation

of parameters is also essential for performing statistical tests on any individ-

ual or set of regression parameters. In practice, there are many variables, the

relationship among which can be explained by a linear regression model, and

hence it is one of the most popular models used in data analysis. However,

fitting any model to a set of data, involves the estimation of the parameters of

the model.

The commonly-used classical estimators of the unknown parameters of the

liner regression models are based exclusively on the sample information. In

real life situations, researchers may have prior information on the parameters

available either in the form of a prior distribution or as a value of a param-

eter. The source of such prior information can be previous studies or expert

1
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knowledge.

The prior distribution of a parameter is used in the Bayesian approach to

statistical analysis. However, if the prior information about the parameter is

available as a constant value rather than as a distribution, the Bayesian ap-

proach cannot be pursued. There are however estimation methods that use

prior information about the value of a parameter in addition to the sample

information. The expectation is that the inclusion of such additional informa-

tion in the estimation process would result in a better estimator than using

sample information alone. In some cases this may be true, but in many other

cases the risk of worse consequences cannot be ruled out.

This thesis deals with the improved estimation strategies of the parameters

of the simple and multiple linear regression models with normal errors, where

sample as well as non-sample prior information about the value of the pa-

rameter are used. The performances of the estimators are investigated under

various loss functions.

There are three main parts of this thesis. Part I consisting of Chapters 2

and 3 studies four different alternative estimators for each of the slope and

intercept parameters of the simple linear regression model under the squared

error loss function. Part II consisting of Chapters 4 and 5 studies the impact

of using three alternative tests in the definition of the same estimator of the

coefficient vector of multiple linear regression model. Finally, Part III consist-

ing of Chapter 6 studies the performance of an improved estimator of the slope

parameter of the simple linear regression model under the linex loss function.
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1.1 Improved Estimation Under Squared

Error Loss Function

The credit for discovery of the method of least squares, generally, is given

to Carl Friedrich Gauss, who used the procedure in the early part of the

nineteenth century. The exclusive sample information based least-squares es-

timator (LSE) or equivalent maximum likelihood estimator (MLE) of the pa-

rameters of the linear models with normal error are unbiased and uniformly

minimum variance. Such an estimator is known as the unrestricted estimator

(UE) as it is obtained from the sample information alone, without any restric-

tion. However, with respect to some other statistical criteria, the UE is not

appropriate and indeed can be improved upon by using additional information

such as non-sample prior information about the value of the parameter.

Credible non-sample prior information about the value of a parameter is

known as uncertain non-sample prior information (UNSPI) as there is doubt

about the accuracy of such information. According to Fisher, the UNSPI about

the value of the parameter can be expressed in the form of a null hypothesis

and the uncertainty can be removed by performing an appropriate statistical

test on that hypothesis (cf. Khan et al., 2002). Under the null hypothesis, the

suspected value of the parameter is known as the restricted estimator (RE).

The RE outperforms the UE when the null hypothesis holds; otherwise the

UE outperforms the RE. Therefore, it is a natural expectation to combine

the sample and non-sample prior information to define an estimator that may

outperform both UE and RE, under certain conditions.

Khan and Saleh (2001) defined the SRE (they called it RE) of the univariate
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normal mean, as a convex combination of the UE and RE, with a coefficient

of distrust d (0 ≤ d ≤ 1) representing the measure of distrust in the UNSPI.

The value of d is determined by the experimenter according to his/her belief

on the null hypothesis. Bancroft (1944), and later Han and Bancroft (1968),

developed the preliminary test estimator (PTE) that uses the sample as well

as uncertain non-sample prior information about the value of the parameter,

in its definition. Some authors call PTE testimator for obvious reasons (cf.

Pandey and Rai, 1996). If the UNSPI about the value of the parameter is not

too far from its true value with respect to the squared error loss, the PTE

dominates the UE (cf. Ahsanullah and Saleh, 1972). Khan and Saleh (2001)

introduced the coefficient of distrust d to the PTE of the univariate normal

mean, and called the new estimator the shrinkage PTE (SPTE). Unlike the

PTE, the SPTE is a continuous function of the UE and RE. For d = 0, the

SPTE becomes the PTE. Therefore, the PTE is a special case of the SPTE.

Stein (1956) surprised the statistical world by declaring that with respect

to the squared error loss function, the sample mean of a p-dimensional (p ≥
3) population is an inadmissible estimator of the population mean, as one

can find another estimator that dominates the sample mean. Later, James

and Stein (1961) introduced the Stein-type or James-Stein shrinkage estimator

(SE) for multivariate normal population that dominates the usual maximum

likelihood estimator, the sample mean, under the squared error loss criterion,

if the dimension of the population is three or more. The seminal work of

Bancroft (1944), Stein (1956), and James and Stein (1961) generated a large

volume of research on improved estimators of parameters.

Ahmed and Saleh (1989) provided a comparison among the UE, RE, PTE
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and SE, for two multivariate normal populations with a common covariance

structure. Their study showed that under certain conditions, the SE outper-

forms the other three estimators. Later, Khan and Hoque (2002) extended the

study by proposing the positive-rule SE (PRSE). They showed that under the

squared error loss criterion, the PRSE is a better choice than the SE. Khan

and Saleh (2001) defined the SE of the univariate normal mean with a slightly

different approach from that for the multivariate set-up. They showed that

with respect to the mean square error criterion, the SE outperforms the UE,

SRE and SPTE, under certain conditions. In a series of papers, Saleh and

Sen (1984, 1985, 1986) introduced the preliminary test approach to Stein’s

approach in the non-parametric set-up.

The simple linear regression model is one of the most widely used models in

many disciplines, and hence improvement in the estimation of its parameters is

desirable. Ahsanullah and Saleh (1972) defined the preliminary test estimator

of the intercept parameter of the simple linear regression model with normal

error, assuming the value of the slope parameter is zero. They derived the bias

and mean square error functions of the PTE and compared them with those

of the maximum likelihood estimator. As the value of the slope parameter is

not necessarily zero, it is of interest to define the PTE/SPTE of the intercept

parameter under the suspicion that the value of the slope parameter is some

constant that may or may not be zero. Bhoj and Ahsanullah (1993) considered

two linear regression models with normal errors and studied the preliminary

test estimator of the conditional mean of the dependent variable in the first

model under the suspicion that the values of the slope parameters for both

models are equal. Later, Bhoj and Ahsanullah (1994) extended the problem
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of the preliminary test estimation of the conditional mean of the first model

under the suspicion that the values of both the slope and intercept parameters

of one model are the same as those of the other model. Saleh and Sen (1978,

1979) considered the non-parametric estimation strategies for the intercept pa-

rameter after a preliminary test on regression, for univariate and multivariate

cases.

Khan and Saleh (1995, 1997) investigated the improved estimation problem

for a family of Student’s t populations. Khan and Saleh (1998) discussed

different estimators of the location parameter for a location-scale model based

on samples from p multivariate Student’s t populations. Many authors have

contributed to this area, notably Sclove et al. (1972), Judge and Bock (1978),

Stein (1981), Matta and Casella (1990), and Khan (1998) to mention a few.

However, the relative performances of the SRE, SPTE and SE of the intercept

and slope parameters of the simple linear regression model have not been

previously investigated.

In this thesis we investigate the alternative estimators of the slope and

intercept parameters those are biased but possess superior statistical property

in terms of a popular statistical criterion, namely the mean square error (mse).

The estimators of slope and intercept parameters considered in this thesis are

the three biased estimators: the SRE, SPTE and SE. The bias and mean square

error functions of the estimators are derived. To compare the performances of

the estimators, the bias and mean square error functions have been analysed

both analytically and graphically. The efficiencies of the estimators relative to

the unrestricted estimator are also investigated.
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1.2 The W, LR and LM Tests in Improved

Estimation

Until recent years, the likelihood ratio test based on t or F statistic, was

used to define preliminary test based estimators. In the literature, there are

alternative tests to the LR test, namely, the Wald (W) and Lagrange multiplier

(LM) tests. The W test was introduced by Wald (1943), and the LM test by

Aitchison and Silvey (1958) and Silvey (1959). Among others, Breusch (1979)

pointed out that the LM test is the same as the score test of Rao (1947).

Engle (1984) distinguished the three tests by stating that “the LM approach

starts at the null and asks whether movement toward the alternative would

be an improvement, the W approach starts at the alternative and considers

movement toward the null, and the LR approach compares the two hypotheses

directly on an equal basis.” Therefore, the three tests based on different test

statistics measure the difference between the null and alternative hypotheses,

but in different fashions. For a geometrical interpretation of these differences

readers may see Engle (1984). Among others, Savin (1976), and Berndt and

Savin (1977) pointed out that a systematic inequality relation exists among

the values of the three test statistics.

The exact sampling distributions of the W, LR and LM test statistics

are complicated (cf. Rothenberg, 1977). In practice, the critical regions of

the tests are determined based on their asymptotic approximations. Under

the null hypothesis, the three test statistics are asymptotically equivalent and

distributed as chi-square with the same degrees of freedom (cf. Engle, 1984).

Evans and Savin (1982) showed that the tests based on the approximate chi-

square critical value differ with respect to their size and power, particularly
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for small samples, and there may be conflict among their conclusions. The

probability of conflict is substantial when the three tests are based on the

same asymptotic chi-square critical value. It may not be surprising that the

use of conflicting tests in the definitions of the SPTE and SE will affect the

statistical properties of the estimators.

Billah (1997) and Billah and Saleh (1998) introduced the three tests in the

formation of the PTE and SPTE for multiple linear regression models with

normal errors. Their studies showed that the performances of the PTEs and

SPTEs are different for different tests. Later, Billah and Saleh (2002a,b) ex-

tended their earlier studies to the regression model with Student’s t errors

revealing the same properties of the estimators as those for the model with

normal errors. Recently, Kibria (2002) and Khan and Hoque (2003) introduce

the three W, LR and LM tests in the formation of the shrinkage preliminary

test maximum likelihood estimator (SPTMLE) and PTEs, respectively for the

multivariate normal mean. Kibria (2002) considered the p-dimensional multi-

variate normal model with mean vector µ and a special covariance structure

Σ = σ2Ip and defined the SPTMLE of µ under the suspicion that the values of

the p components of the population mean vector are equal. Khan and Hoque

(2003) considered the same model but defined the PTE of µ under the suspi-

cion that µ = µ0, a given vector of the same dimension. The studies of Kibria

(2002) and Khan and Hoque (2003) revealed that the use of the asymptotically

equivalent tests in improved estimation of the parameters results in conflicting

performances of the estimators.

With a view to dealing with the conflict among the three tests, Evans and

Savin (1982) studied the properties of the three tests after the introduction
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of some correction factors to the test statistics. They used degrees of free-

dom corrections to the W and LM test statistics and Edgeworth correction to

the LR test statistic. The degrees of freedom correction was originally intro-

duced by Gallant (1975) for non-linear regression model. It corrects the bias

of the estimate of the error variance. The Edgeworth correction was derived

by Rothenberg (1977) from the second order Edgeworth approximation to the

exact distribution of the test statistic. The tests with these corrections are

known as the modified W, LR and LM tests. Evans and Savin (1982) cal-

culated the powers of the modified tests and the probability of conflict and

showed that the modification results in a better approximation to the power

function of the exact tests. However, the conflict remains still substantial. The

inequality relation that holds for the original test statistics does not hold for

the modified test statistics. Khan and Hoque (2003) also introduced the mod-

ified W, LR and LM tests in the formation of the SPTE of the multivariate

normal mean. Their study showed that the use of the modified tests reduces

the conflict among the properties of the SPTEs to some extent but remains

considerable.

The conflict among the W, LR and LM tests with or without modification is

due to the fact that they use the same chi-square critical value despite the fact

that the values of the test statistics are not the same, in general. Further, Evans

and Savin (1982), and Rothenberg (1977) suggested the Edgeworth correction

to the chi-square critical values of the W and LM test statistics, in addition to

that of the LR test statistics. They showed that the Edgeworth corrections to

the critical values of the tests almost eliminate the conflict among the powers

of the tests. Therefore, it is of interest to investigate the performances of the
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improved estimators under the three alternative tests and under their different

versions.

In this thesis, we define the SPTEs of the parameter vector of the multiple

linear regression model under the original, modified and size-corrected W, LR

and LM tests. The quadratic risk functions of the estimators are derived. The

efficiencies of the SPTEs (with respect to the quadratic risk) relative to the

UE are obtained. The conflict among the relative efficiencies is calculated.

Here conflict is defined as the difference between the maximum and minimum

relative efficiencies of the SPTEs under different tests and for any particular

value of the non-centrality parameter of the non-central F distribution. It is

seen that the use of the original tests in the formation of the SPTE results in

a great deal of conflict among the statistical properties of the SPTEs. Though

the use of the modified tests reduces this conflict to some extent, it remains

considerable. However, the use of the size-corrected tests almost eliminates

the conflict among the statistical properties of the SPTEs.

By definition, unlike the SPTE, the SE does not depend on the level of

significance of the preliminary test of the null hypothesis. On the other hand,

the modified LR and the size-corrected W, LR and LM tests are obtained

by using the size correction of the tests. Therefore, the SE is defined under

the original W, LR and LM test statistics only. The performances of the

SEs with respect to the quadratic bias and quadratic risk are investigated.

Both graphical and numerical analyses are pursued. It is revealed that under

the quadratic bias criterion the performance of the W test statistic based SE

is the best having smallest QB, followed by the LR and LM test statistics

based SEs, respectively. Under the quadratic risk criterion there is no uniform



1.3 Improved Estimation Under Linex Loss Function 11

domination of one SE over the others. However, under certain conditions, the

LM test statistic based SE dominates the other two SEs.

1.3 Improved Estimation Under Linex Loss

Function

The popularity of the squared error loss function is due to its mathemati-

cal and interpretational convenience. In spite of the wide popularity of this

symmetric loss function, many authors have recognised it as inappropriate in

various problems (see, for instance, Ferguson, 1967; Zellner and Geisel, 1968;

Aitchison and Dunsmore, 1975; Varian, 1975; Berger, 1980). As pointed out by

Zellner (1986), the admissibility of an estimator may depend quite sensitively

on features of the loss function, such as symmetry, is not generally appreci-

ated. Due to the symmetric nature of the squared error loss function it cannot

differentiate between the overestimation and underestimation of any parame-

ter. In real life situations there are numerous cases where underestimation of

a parameter leads to more or less severe consequences than overestimation. In

dam construction, for example, underestimation of the peak water level is more

serious than overestimation. On the other hand, for a manufacturing company,

overestimation of the mean life of the product for the purposes of customers

warranty is more serious than underestimation. As the squared error loss func-

tion is unable to assign appropriate unequal weights for underestimation and

overestimation of any parameter, the use of this loss function is inappropriate

and hence not useful.

In an applied study of real estate assessment, Varian (1975) introduced a

very useful non-symmetric loss function called the linex loss function, that has
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both linear and exponential components and is appropriate to represent asym-

metric losses. This loss function grows approximately exponentially on one

side of zero, the value of the estimation error, and approximately linearly on

the other side. The linex loss function assigns unequal weights to the underes-

timation and overestimation by using a shape parameter. For small values of

the shape parameter, the linex loss function is approximately symmetric and

not too far from the quadratic loss function (cf. Zellner, 1986). The linex loss

function is more general than the squared error loss function as the later is a

special case of the former.

Zellner (1986) studied the properties of estimation and prediction proce-

dures under the linex loss function. He showed that some usual estimators

that are admissible relative to the squared error loss function, are inadmissible

relative to the linex loss function. For example, Zellner (1986) proved that the

UE X̄ of the univariate normal mean is inadmissible relative to the linex loss

function, as the risk of the estimator X̄ − aσ2/2n is less than that of the UE,

where a is the shape parameter of the linex loss function, σ2 is the population

variance and n is the size of the sample. In the case of unknown σ2, he sug-

gested using S2 =
∑n

i=1(Xi − X̄)2/n. Later, Rojo (1987) generalized Zellner’s

result and showed that under the linex loss function any estimator of the form

cX̄ + d, of θ is admissible if either 0 ≤ c < 1, or c = 1 and d = −aσ2/2n.

Otherwise, cX̄ + d is inadmissible. Pandey and Rai (1996) investigated the

properties of the so called testimator, a choice between X̄ and X̄ − aσ2/2n, of

the univariate normal mean under the linex loss function. They showed that

the testimator dominates the admissible estimator in terms of the linex risk

in certain region of the parametric space. Further contributions to this area
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include Bhattacharaya et al. (2002), Parsian and Farispour (1993), Parsian et

al. (1993), and Pandey and Rai (1992), to mention a few.

In this thesis we have derived the risk functions of the UE and PTE of

the slope parameter of the simple linear regression model under the linex loss

function. Using the moment generating function of the PTE, the bias and

mse functions of the PTE of the slope parameter are derived. With respect

to the linex loss function, the performance of the PTE relative to that of the

UE is investigated. It is found that with respect to the linex loss function,

the PTE dominates the UE in the neighbourhood of ∆ = 0, where ∆ is the

non-centrality parameter of non-central Student’s t distribution. For very large

value of ∆, the performance of the PTE is the same as that of the UE. Like the

form of the linex loss function, the form of the risk function of the PTE is also

asymmetric. However, for very small value of the shape parameter of the linex

loss function, the form of the risk function of the PTE is almost symmetric.



Part I

Estimation Under Squared
Error Loss Function

14



Chapter 2

Estimation of the Slope
Parameter of Simple Linear
Regression Model

2.1 Introduction

Consider a set of n random sample observations (xi, yi) for i = 1, 2, . . . , n from

the simple linear regression model

y = β0 + β1x + ε (2.1.1)

where y is the response variable, β0 is the intercept parameter, β1 is the slope

parameter, x is the predictor and ε is the error component associated with

the response variable. Assume that the errors are independently and identi-

cally distributed as a normal variable with mean 0 and variance σ2. Then, in

conventional notation we write ε iid N(0, σ2).

The exclusive sample information based maximum likelihood estimator of

the slope parameter β1 is known as the unrestricted estimator (UE). Assume

that uncertain non-sample prior information on the value of the slope param-

eter is available either from previous study or from practical experience of

15
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researchers or experts. Such non-sample prior information about the value of

β1 can be expressed in the form of the null hypothesis

H0 : β1 = β10 (2.1.2)

which may be true, but there is doubt. The estimator of β1 under the null

hypothesis in (2.1.2) is known as the restricted estimator (RE). We wish to

combine the sample and uncertain non-sample prior information in estimating

the slope β1.

Following Khan and Saleh (2001), we assign a coefficient of distrust d,

0 ≤ d ≤ 1, for the non-sample prior information, as a measure of the degree of

distrust in the null hypothesis. First we obtain the unrestricted and restricted

estimators of the unknown slope β1 and the common variance σ2 from the

likelihood function of the sample. Based on the UE and RE of σ2, we select the

likelihood ratio test for testing H0 in (2.1.2) against the alternative hypothesis

Ha : β1 6= β10. (2.1.3)

We then use the test statistic and coefficient of distrust, as well as the sample

and non-sample prior information to define some alternative estimators of the

unknown slope β1.

Using the above methods we define a number of improved estimators of the

slope parameter β1, namely the shrinkage restricted estimator (SRE), shrink-

age preliminary test estimator (SPTE), and the shrinkage estimator (SE). To

compare the performances of the estimators we investigate their bias and mean

square error (mse) functions, both analytically and graphically. The relative

efficiencies of the estimators are also studied to search for a better estimator
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in some sense. Extensive computations have been undertaken to check the

properties of the estimators. Analytical and graphical analyses reveal that

although none of the estimators has uniformly superior statistical properties,

the SE dominates the other estimators considered in this study, provided the

non-sample prior information regarding the value of β1 is not too far from

its true value. As the prior information is obtained from previous studies or

expert’s knowledge, it is expected that such an information will not be too far

from the true value of the parameter.

The layout of this chapter is as follows. Section 2.2 deals with the spec-

ification of the model and definition of the unrestricted maximum likelihood

estimators of β1 and σ2 as well as the derivation of the likelihood ratio test

statistic to test the null hypothesis in (2.1.2). Three alternative estimators of

the slope parameter are defined in Section 2.3. Expressions for the bias and

mse of the estimators are derived in Section 2.4. A comparative study of the

relative efficiencies of the estimators is provided in Section 2.5. Some conclud-

ing remarks are presented in Section 2.6. Selected MATLAB codes, used for

producing graphs, are presented in Appendix 2.A.

2.2 Some Preliminaries

Let the n sample responses from the linear regression model in (2.1.1) be

expressed in the following convenient form

y = β01n + β1x + ε (2.2.1)

where y = (y1, . . . , yn)′ is an n × 1 vector of responses, 1n = (1, . . . , 1)′ is a

vector of one’s, x is an n× 1 vector of predictors, β0 and β1 are the unknown
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intercept and slope parameters respectively, and ε = (ε1, . . . , εn)′ is a vector

of errors with independent components which is distributed as Nn(0, σ2In).

Hence,

E[ε] = 0 (2.2.2)

and

E[εε′] = σ2In. (2.2.3)

Here, σ2 stands for the variance of each of the error components in ε and In

is the identity matrix of order n.

The exclusive sample information based UE of the slope parameter β1 is

given by

β̃1 = S−1
xx Sxy (2.2.4)

where Sxx =
∑n

i=1(xi − x̄)2, the sum of squares of x and Sxy =
∑n

i=1(xi −
x̄)(yi − ȳ), the sum of products of x and y .

It is well known that the UE of σ2 is

S∗2n =
1

n
(y − ŷ)′(y − ŷ) (2.2.5)

where ŷ = β̃01n + β̃1x in which β̃0 is the UE of β0. This estimator of σ2 is

biased. However, an unbiased estimator of σ2 is

S2
n =

1

n− 2
(y − ŷ)′(y − ŷ). (2.2.6)

The unbiased estimator of σ2 has a scaled χ2 distribution with shape parameter

ν = (n− 2). The estimated standard error of β̃1 is SnS
−1/2
xx .

To be able to use the uncertain non-sample prior information in the estima-

tion of the slope, it is essential to remove the element of uncertainty concerning
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its value. To remove the uncertainty in the non-sample prior information Fisher

suggested (cf. Khan and Saleh, 2001) conducting an appropriate statistical test

on the null-hypothesis. For the problem under study, an appropriate test is

the likelihood ratio test, and the test statistic is given by

Lν =

√
Sxx(β̃1 − β10)

Sn

. (2.2.7)

Under Ha, the above test statistic Lν follows the non-central Student’s t dis-

tribution with ν degrees of freedom (d.f.) and non-centrality parameter ∆,

given by

∆ =

√
Sxx(β1 − β10)

σ
. (2.2.8)

Equivalently, under Ha, L2
ν follows the non-central F distribution with (1, ν)

degrees of freedom and non-centrality parameter ∆2. Under the null-hypothesis

Lν and L2
ν follow central Student’s t and F distributions respectively with ap-

propriate degrees of freedom. This test statistic was used by Bancroft (1944)

to define the preliminary test estimator (PTE). In this study, the same test

statistic is used to define the shrinkage preliminary test and shrinkage estima-

tors by following the preliminary test approach.

For the model in (2.1.1) the sampling distribution of the UE of β1 is normal

with mean and variance given by

E[β̃1] = β1 (2.2.9)

and

Var
[
β̃1

]
= σ2S−1

xx (2.2.10)

respectively. Therefore, β̃1 is unbiased for β1, and hence its mse is the same as
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its variance. Evidently, the bias and the mse of β̃1 are given by

B1

[
β̃1

]
= 0 (2.2.11)

and

M1

[
β̃1

]
= σ2S−1

xx (2.2.12)

respectively. In this study, the above bias and mse functions are compared

with those of the SRE, SPTE and SE of β1.

2.3 Proposed Improved Estimators of the

Slope

As part of incorporating the uncertain non-sample prior information into the

estimation process, first we combine the exclusive sample information based

UE β̃1 with the non-sample prior information presented in the form of the

null hypothesis in (2.1.2) in some reasonable way. Consider a simple convex

combination of β̃1 and β̂1 as

β̂SRE

1 = dβ̃1 + (1− d)β̂1 (2.3.1)

where β̂1 = β10 and 0 ≤ d ≤ 1. This estimator of β1 is called the shrinkage

restricted estimator (SRE). Here, d = 0 means that there is no distrust in

the H0, and then we get β̂SRE
1 = β̂1, the RE, while d = 1 means that there is

complete distrust in the H0 and then we get β̂SRE
1 = β̃1, the UE . If 0 < d < 1

(that is, the degree of distrust is an intermediate value) then the SRE of β1

takes an interpolated value between β̂1 and β̃1, given by (2.3.1). The shrinkage

restricted estimator, as defined above, is normally distributed with mean and
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mean square error given by

E
[
β̂SRE

1

]
= dβ1 + (1− d)β10 (2.3.2)

and

M2

[
β̂SRE

1

]
=

σ2

Sxx

[
d2 + (1− d)2∆2

]
(2.3.3)

respectively.

Following Khan and Saleh (2001), the shrinkage preliminary test estimator

of the slope parameter β1 is defined as

β̂SPTE

1 = β̂SRE

1 I
(|tν | < tα/2) + β̃1 I(|tν | ≥ tα/2

)

= β̂SRE

1 I
(|tν | < tα/2) + β̃1

{
1− I

(|tν | < tα/2)
}

= β̃1 −
[
β̃1 − β̂SRE

1

]
I
(|tν | < tα/2)

= β̃1 −
[
β̃1 − dβ̃1 − (1− d)β̂1

]
I
(|tν | < tα/2)

= β̃1 − (1− d)(β̃1 − β̂1) I(|tν | < tα/2) (2.3.4)

where I(A) is an indicator function of the set A and tα/2 is the critical value

chosen for the two-sided α-level test based on the Student’s t distribution with

ν degrees of freedom. A simplified form of the above shrinkage preliminary

test estimator is given by

β̂SPTE

1 = β̂1 I
(|tν | < tα/2

)
+ β̃1 I

(|tν | ≥ tα/2

)
(2.3.5)

which is a special case of (2.3.4) when d = 0. Note that, β̂SPTE
1 (d 6= 0) is a

combination of β̂SRE
1 and β̃1, and β̂SPTE

1 is a choice between β̂1 and β̃1. For the

convenience of the derivation of the bias and mean square error function of the

SPTE, (2.3.4) may be rewritten as

β̂SPTE

1 = β̃1 − (1− d)(β̃1 − β̂1) I(F < Fα) (2.3.6)
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where Fα is the (1 − α)th quantile of the central F distribution with (1, ν)

degrees of freedom. For an equivalent expression of the SPTE see Khan and

Saleh (2001). If d = 0, (2.3.6) is

β̂SPTE

1 (d = 0) = β̃1 − (β̃1 − β̂1) I(F < Fα) (2.3.7)

which is the PTE of β1.

The performance of the SPTE depends on the pre-selected level of signifi-

cance, α of the test. To overcome this limitation, the shrinkage estimator (SE)

of β1 is considered and is defined as

β̂SE

1 = β̂1 + (1− c|tν |−1)(β̃1 − β̂1)

= β̂1 +

{
1− cSn

|√Sxx(β̃1 − β̂1)|

}
(β̃1 − β̂1)

= β̃1 − cSn(β̃1 − β̂1)∣∣∣√Sxx(β̃1 − β̂1)
∣∣∣

(2.3.8)

where c is the shrinkage constant, a function of n. If |tν | =
∣∣∣
√

Sxx(β̃1−β̂1)
Sn

∣∣∣ is

large, β̂SE
1 tends towards β̃1, while if |tν | is small, equal to c, β̂SE

1 tends towards

β10. Unlike the shrinkage preliminary test estimator, the shrinkage estimator

does not depend on the level of significance of the test. Though the dimension

of the population considered in this study, is less than three, unlike the Stein-

type shrinkage estimator, the SE in (2.3.8) is admissible over the UE with

respect to the squared error loss criterion.

2.4 Some Statistical Properties

In this section, the bias and mean square error functions of the SRE, SPTE

and SE of the slope parameter β1 are derived. Also, some of the important
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features of these functions are discussed.

2.4.1 The Bias and MSE of the SRE

Theorem 2.41 The bias function of the shrinkage restricted estimator of the

slope parameter β1 is given by

B2

[
β̂SRE

1

]
= −(1− d)

σ√
Sxx

∆ (2.4.1)

where ∆ is the non-centrality parameter of non-central Student’s t distribution.

Proof. By definition, the bias function of the SRE of β1 is

B2

[
β̂SRE

1

]
= E

[
β̂SRE

1 − β1

]

= E
[
dβ̃1 − β1 + (1− d)β10

]

= dβ1 − β1 + (1− d)β10

= −(1− d)(β1 − β10)

= −(1− d)
σ√
Sxx

∆. (2.4.2)

This completes the proof of the theorem.

Theorem 2.42 The mean square error function of the shrinkage restricted

estimator of the slope parameter β1 is given by

M2

[
β̂SRE

1

]
=

σ2

Sxx

[
d2 + (1− d)2∆2

]
(2.4.3)

where ∆2 is the non-centrality parameter of non-central F distribution.

Proof. By definition, the mse function of the SRE of β1 is

M2

[
β̂SRE

1

]
= E

[
β̂SRE

1 − β1

]2

= E
[
dβ̃1 − β1 + (1− d)β10

]2
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= E
[
d(β̃1 − β1)− (1− d)(β1 − β10)

]2

= d2E
[
β̃1 − β1

]2

+ (1− d)2(β1 − β10)
2

=
d2σ2

Sxx

+ (1− d)2(β1 − β10)
2

=
σ2

Sxx

[
d2 + (1− d)2∆2

]
. (2.4.4)

This completes the proof of the theorem.

If the null hypothesis in (2.1.2) is true, the value of the parameter ∆2 is 0;

otherwise, it is always positive. The statistical properties of the SRE, SPTE

and SE depend on the value of this parameter. This feature is investigated in

greater detail in the forthcoming sections.

2.4.2 The Bias and MSE of the SPTE

Theorem 2.43 The bias function of the shrinkage preliminary test estimator

of the slope parameter β1 is given by

B3

[
β̂SPTE

1

]
= −(1− d)

σ√
Sxx

∆ G3, ν

(1

3
Fα; ∆2

)
(2.4.5)

where Ga, b(·; ∆2) is the c.d.f. of the non-central F distribution with (a, b)

degrees of freedom and non-centrality parameter ∆2.

Proof. By definition, the bias function of the SPTE of β1 is

B3

[
β̂SPTE

1

]
= E

[
β̂SPTE

1 − β1

]

= E
[
β̃1 − β1 − (1− d) (β̃1 − β10) I

(
F < Fα

)]

= −(1− d)
σ√
Sxx

E

[√
Sxx(β̃1 − β10)

σ
I

(
Sxx(β̃1 − β10)

2

S2
n

< Fα

)]
.

(2.4.6)
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Note Z =
√

Sxx(β̃1 − β10)σ
−1 is distributed as N(∆, 1), and νσ−2S2

n is dis-

tributed as a central chi-square variable with ν degrees of freedom. Therefore,

B3

[
β̂SPTE

1

]
= −(1− d)

σ√
Sxx

E

[
Z I

(
νZ2

χ2
ν

< Fα

)]
. (2.4.7)

Applying Theorem 1, Appendix B2, Judge and Bock (1978) to (2.4.7), the bias

function of the SPTE of β1 can be written as

B3

[
β̂SPTE

1

]
= −(1− d)(β1 − β10) G3, ν

(
1

3
Fα; ∆2

)

= −(1− d)
σ√
Sxx

∆ G3, ν

(
1

3
Fα; ∆2

)
. (2.4.8)

This completes the proof of the theorem.

Theorem 2.44 The mean square error function of the shrinkage preliminary

test estimator of the slope parameter β1 is given by

M3

[
β̂SPTE

1

]
=

σ2

Sxx

[
1− (1− d2)G3, ν

(
1

3
Fα; ∆2

)
+ (1− d)∆2

×
{

2G3,ν

(
1

3
Fα; ∆2

)
− (1 + d)G5, ν

(
1

5
Fα; ∆2

)}] (2.4.9)

where Ga,b(·; ∆2) is the c.d.f. of the non-central F distribution with (a, b) de-

grees of freedom and non-centrality parameter ∆2.

Proof. By definition, the mse function of the SPTE of β1 is

M3

[
β̂SPTE

1

]
= E

[
β̂SPTE

1 − β1

]2

= E
[
(β̃1 − β1)− (1− d)(β̃1 − β10) I(F < Fα)

]2

= E
[
β̃1 − β1

]2

+ (1− d)2E
[
(β̃1 − β10)

2 I(F < Fα)
]

− 2(1− d) E
[
(β̃1 − β1)(β1 − β10) I(F < Fα)

]

=
σ2

Sxx

+ (1− d)2E
[
(β̃1 − β10)

2 I(F < Fα)
]

− 2(1− d) E
[
(β̃1 − β1)(β1 − β10) I(F < Fα)

]
. (2.4.10)
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The second term of the right hand side of (2.4.10) is

(1− d)2E
[
(β̃1 − β10)

2 I(F < Fα)
]

= (1− d)2 σ2

Sxx

E

[
Z2 I

(
νZ2

χ2
ν

< Fα

)]
.

(2.4.11)

Applying Theorem 3, Appendix B2, Judge and Bock (1978) to (2.4.11), we

get

(1− d)2E
[
(β̃1 − β10)

2 I(F < Fα)
]

= (1− d)2 σ2

Sxx

G3,ν

(
1

3
Fα; ∆2

)
+ (1− d)2 σ

Sxx

∆2 G5,ν

(
1

5
Fα; ∆2

)
. (2.4.12)

Now,

E
[
(β̃1 − β1)(β̃1 − β10) I(F < Fα)

]

= E
[{

(β̃1 − β10)− (β1 − β10)
}

(β̃1 − β10) I(F < Fα

)]

= E
[
(β̃1 − β10)

2 I(F < Fα)
]
− σ√

Sxx

∆E
[
(β̃1 − β10) I(F < Fα)

]

=
σ2

Sxx

E

[
Z2 I

(
νZ2

χ2
ν

< Fα

)]
− σ2

Sxx

∆ E

[
Z I

(
νZ2

χ2
ν

< Fα

)]
. (2.4.13)

Applying Theorems 1 and 3, Appendix B2, Judge and Bock (1978) to

(2.4.13), the last term of (2.4.10) becomes

2(1− d) E
[
(β̃1 − β1)(β̃1 − β10)

]
I(F < Fα)

= 2(1− d)
σ2

Sxx

[
∆2G5,ν

(
1

5
Fα; ∆2

)
+

{
1−∆2

}
G3,ν

(
1

3
Fα; ∆2

)]
.

(2.4.14)

Collecting all terms, the mse function of the SPTE of β1 can be expressed

as

M3

[
β̂SPTE

1

]
=

σ2

Sxx

[
1− (1− d2) G3,ν

(1

3
Fα; ∆2

)
+ (1− d)∆2

×
{

2G3,ν

(
1

3
Fα; ∆2

)
− (1 + d) G5,ν

(
1

5
Fα; ∆2

)}]
. (2.4.15)
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This completes the proof of the theorem.

Figure 2.1 displays the behaviour of the mse function for a range of values

of ∆2 and selected values of α and d.
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Figure 2.1: The mean square error of the SPTE of the Slope.

2.4.2.1 Some Properties of the MSE of the SPTE

Here we discuss some important features of the mse function of the SPTE of

β1.

• Under the null hypothesis, ∆2 = 0 and hence the mse of β̂SPTE
1 is

σ2

Sxx

[
1− (1− d2) G3,ν

(
1

3
Fα; 0

)]
<

σ2

Sxx

, if d < 1. (2.4.16)

Thus, when ∆2 = 0 the SPTE of β1 performs better than β̃1, the UE.

As α → 0, G3,ν

(
1
3
Fα; 0

)
→ 1, and hence

σ2

Sxx

[
1− (1− d2) G3,ν

(
1

3
Fα; 0

)]
→ d2σ2

Sxx

, (2.4.17)

which is the mse of β̂SRE
1 . On the other hand, if Fα → 0, G3,ν

(
1
3
Fα; 0

)
→
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0, and hence

σ2

Sxx

[
1− (1− d2) G3,ν

(
1

3
Fα; 0

)]
→ σ2

Sxx

(2.4.18)

which is the mse of β̃1.

• As ∆2 → ∞, Gm,ν

(
1
m

Fα; ∆2
)
→ 0, and M3

[
β̂SPTE

1

]
in (2.4.15) tends

towards σ2

Sxx
, the mse of β̃1.

• Since G3,ν

(
1
3
Fα; ∆2

)
is always greater than G5,ν

(
1
5
Fα; ∆2

)
for any value

of α, replacing G5,ν

(
1
5
Fα; ∆2

)
by G3,ν

(
1
3
Fα; ∆2

)
in (2.4.15) implies

M3

[
β̂SPTE

1

]
≥ σ2

Sxx

[
1 + (1− d2)G3,ν

(1

3
Fα; ∆2

){
(1− d)∆2 − (1 + d)

}]

≥ σ2

Sxx

whenever ∆2 >
1 + d

1− d
.

On the other hand, (2.4.15) may be rewritten as

σ2

Sxx

[
1 + (1− d)G3,ν

(1

3
Fα; ∆2

) {
2∆2 − (1 + d)

}− (1− d2)G5,ν

(1

5
Fα; ∆2

)]

≤ σ2

Sxx

whenever ∆2 <
1 + d

2
.

This means that the mse of β̂SPTE
1 as a function of ∆2 crosses the constant

line of M1

[
β̃1

]
= σ2

Sxx
in the interval

(
1+d
2

, 1+d
1−d

)
.

A general picture of the mse function of the SPTE of β1 can be described

as follows:

The mse function begins with the smallest value σ2

Sxx

[
1− (1− d2)×

G3,ν

(
1
3
Fα ; 0

)]
at ∆2 = 0. As ∆2 grows larger, the function increases monoton-

ically, crossing the constant line σ2S−1
xx in the interval

(
1+d
2

, 1+d
1−d

)
and reaching

its maximum in the interval
(

1+d
1−d

,∞)
. Finally, as ∆2 → ∞, the mse of the

SPTE of β1 monotonically decreases and approaches σ2S−1
xx , the mse of the UE

of β1.
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2.4.2.2 Determination of Optimum α for the SPTE

Clearly, the mse, and hence the relative efficiency of the shrinkage preliminary

test estimator relative to the unrestricted estimator, depends on the level of

significance α of the test of the null-hypothesis and the value of ∆2.

Let the efficiency of the SPTE relative to the UE of β1 be denoted by

Eff(α; ∆2). Then

Eff(α; ∆2) = M1

[
β̃1

]/
M3

[
β̂SPTE

1

]

= [1 + g(∆2)]−1 (2.4.19)

where g(∆2) = (1− d)∆2
{

2G3,ν

(1

3
Fα; ∆2

)}
− (1 + d) G5,ν(

1

5
Fα; ∆2

)

− (1− d2)G3,ν

(1

3
Fα; ∆2

)
. (2.4.20)

The relative efficiency function Eff(α; ∆2) attains its maximum at ∆2 = 0

for all α, and is given by

Eff(α; ∆2) =

[
1− (1− d2)G3,ν

(1

3
Fα; 0

)]−1

≥ 1. (2.4.21)

As ∆2 departs from the origin, Eff(α; ∆2) decreases monotonically, crossing

the line Eff(α; ∆2) = 1 in the interval
(

1+d
2

, 1+d
1−d

)
and reaching a minimum at

∆2 = ∆2
min. From that point on it increases monotonically towards one as

∆2 →∞. For ∆2 = 0 and varying significance level, we have

max
α

Eff(α; 0) = Eff(0; 0) = d−2. (2.4.22)

As a function of α, Eff(α; 0) decreases as α increases. On the other hand,

Eff(α; ∆2) as a function of ∆2 is decreasing, and the curves Eff(0; ∆2) and
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Eff(1/2; ∆2) = 1 intersect at ∆2 = 1+d
1−d

. The value of ∆2 at the intersection

decreases as α increases. Therefore, for two different levels of significance

say, α1 and α2, Eff(α1; ∆
2) and Eff(α2; ∆

2) intersects below one. In order to

choose an optimum level of significance with maximum relative efficiency, the

following rule is adopted:

If it is known that 0 ≤ ∆2 ≤ 1+d
1−d

, β̂1 is always chosen since Eff(0, ∆2) is

maximum for all ∆2 in this interval. Generally, ∆2 is unknown. In this case

there is no way of choosing the uniformly best estimator of β1.

Let us pre-assign a tolerable relative efficiency, say, Eff0, and consider the

set

Aα =
{
α | Eff(α; ∆2) ≥ Eff0

}
. (2.4.23)

An estimator β̂SPTE
1 is chosen which maximizes Eff(α; ∆2) over all α ∈ Aα and

∆2. Thus, for given Eff0 the solution α = α∗

max
α

min
∆2

Eff(α; ∆2) = Eff0 (2.4.24)

provides an optimal choice of α, and the procedure is known as the maximin

rule of the optimum level of significance of the preliminary test. A numerical

procedure along with practical illustration of selecting an optimal α is provided

in Khan and Saleh (2001).

2.4.3 The Bias and MSE of the SE

Following Bolfarine and Zacks (1992), the bias and mean square error functions

of the shrinkage estimator of the slope parameter β1 are derived and presented

in the following theorems.
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Theorem 2.45 The bias function of the shrinkage estimator of β1 is given by

B4

[
β̂SE

1

]
=

cx̄σ√
Sxx

Kν

{
1− 2Φ(−∆)

}
(2.4.25)

where Kn =
√

2
n−2

Γ(n−1
2

)

Γ(n−2
2

)
and Φ(·) is the c.d.f. of the standard normal distri-

bution.

Proof. By definition, the bias function of the SE of β1 is

B4

[
β̂SE

1

]
= E

[
β̂SE

1 − β1

]

= E


β̃1 − β1 − cSn(β̃1 − β10)∣∣∣√Sxx(β̃1 − β10)

∣∣∣




= −c E


 Sn(β̃1 − β10)∣∣∣√Sxx(β̃1 − β10)

∣∣∣




= − c√
Sxx

E[Sn] E

[
Z

|Z|
]

(2.4.26)

where Z =
√

Sxx(β̃1−β10)
σ

∼ N (∆, 1).

Now, we evaluate E[Sn] and E
[

Z
|Z|

]
.

By definition, (n−2)S2
n

σ2 ∼ χ2
n−2. Therefore,

fSn(y) =
2

2
n−2

2 Γ
(

n−2
2

)e
(n−2)y2

2σ2

{
(n− 2)y2

σ2

}n−2
2
−1

(n− 2)y

σ2
. (2.4.27)

Then, using the definition of expectation,

ESn [y] =
2

2
n−2

2 Γ(n−2
2

)

∫ ∞

0

e−
(n−2)y2

2σ2

{
(n− 2)y2

σ2

}n−2
2

dy. (2.4.28)

Consider (n−2)y2

2σ2 = y1. The Jacobian of the transformation is

|J | =
(

σ2

2(n−2)y1

)1/2

. Therefore,

ESn [y] =
2

2
n−2

2 Γ
(

n−2
2

)
∫ ∞

0

e−y1 (2 y1)
n−2

2

(
σ2

2 y1(n− 2)

)1/2

dy1
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=
21/2 σ

(n− 2)1/2 Γ(n−2
2

)

∫ ∞

0

e−y1 y
n−1

2
−1

1 dy1

=
(2σ2)1/2

(n− 2)1/2

Γ(n−1
2

)

Γ(n−2
2

)
. (2.4.29)

By definition,

E

[
Z

|Z|
]

= E

[
Z

|Z|
∣∣∣Z > ∆

]
+ E

[
Z

|Z|
∣∣∣Z < −∆

]

=

∫ ∞

∆

z

z
f(z)dz +

∫ −∆

−∞

z

−z
f(z)dz

= 1−
∫ −∆

−∞

z

−z
f(z)dz −

∫ −∆

−∞

z

−z
f(z)dz

= 1− P (z < −∆)− P (z < ∆)

= 1− 2 Φ(−∆). (2.4.30)

Therefore, the bias function of the SE of β1 is obtained as

B4

[
β̂SE

1

]
=

cx̄σ√
Sxx

Kn

{
1− 2Φ(−∆)

}
. (2.4.31)

This completes the proof of the theorem.

From the expression of the above bias function, the quadratic bias function of

the SE of β1 is obtained as

QB4

[
β̂SE

1

]
=

σ2x̄2

Sxx

c2K2
n

{
2Φ(∆)− 1

}2

(2.4.32)

where Kn =
√

2
n−2

Γ(n−1
2

)

Γ(n−2
2

)
.

Theorem 2.46 The mean square error function of the shrinkage estimator of

the slope parameter β1 is given by

M4

[
β̂SE

1

]
=

σ2

Sxx

{
1 + c2 − 2cKn

√
2

π
e−∆2/2

}
(2.4.33)

where Kn is as defined in Theorem 2.45
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Proof. By definition, the mse function of the SE of β1 is

M4

[
β̂SE

1

]
= E

[
β̂SE

1 − β1

]2

= E

[
β̃1 − β1 − cSn(β̃1 − β10)

|√Sxx(β̃1 − β10)|

]2

= E
[
β̃1 − β1

]2

+ c2 E
[
S2

n

]
E

[
(β̃1 − β10)

2

[
√

Sxx(β̃1 − β10)]2

]

− 2c E

[
(β̃1 − β1)(β̃1 − β10)

|√Sxx(β̃1 − β10)|

]
E[Sn]

=
σ2

Sxx

+
c2σ2

Sxx

− 2c
σ2Kn

Sxx

{
E[|Z|]−∆E

[
Z

|Z|
]}

. (2.4.34)

where Z ∼ N (∆, 1).

As Z ∼ N (∆, 1), we write

f|Z|(z) = φ(z −∆) + φ(z + ∆). (2.4.35)

Now, by definition

E[|Z|] =

∫ ∞

0

z φ(z −∆) dz +

∫ ∞

0

z φ(z + ∆) dz

=

∫ ∞

∆

z φ(z) dz +

∫ ∞

−∆

z φ(z) dz + ∆

{∫ ∞

−∆

φ(z) dz −
∫ ∞

∆

φ(z) dz

}

=

∫ ∞

∆

z φ(z) dz +

∫ ∞

−∆

z φ(z) dz + ∆
{

2 Φ(∆)− 1
}

=

√
2

π
e−∆2/2 + ∆

{
2Φ(∆)− 1

}
(2.4.36)

where Φ(·) is the c.d.f. of the standard normal variable.

Therefore, the mse of the SE of β1 is obtained as

M4

[
β̂SE

1

]
=

σ2

Sxx

{
1 + c2 − 2cKn

√
2

π
e−∆2/2

}
. (2.4.37)
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2.4.3.1 Determination of the Optimum Value of c

A stationary point of M4

[
β̂SE

1

]
with respect to c occurs when the first derivative

(with respect to c)

M′
4

[
β̂SE

1

]
=

σ2

Sxx

{
2c− 2Kn

√
2

π
e−∆2/2

}
= 0 , (2.4.38)

from which

c = c∗ = Kn

√
2

π
e−∆2/2. (2.4.39)

The second derivative of M4

[
β̂SE

1

]
with respect to c is

M′′
4

[
β̂SE

1

]
=

2σ2

Sxx

> 0 . (2.4.40)

Therefore, c∗ is the value of c that minimizes (2.4.37). It depends on ∆2 as

shown in (2.4.39).

To make c∗ independent of ∆2, we choose c0 =
√

2
π
Kn. Thus, optimum

M4

[
β̂SE

1

]
becomes

M4

[
β̂SE

1

]
=

σ2

Sxx

{
1− 2

π
K2

n

[
2e−∆2/2 − 1

]}
. (2.4.41)

The above mse function of the SE of β1 is compared with those of the other

estimators of β1 in the next section.

2.5 Performances Comparison of the

Estimators

In this section, the quadratic bias functions and relative efficiencies of the SRE,

SPTE and SE are compared with those of the UE of the slope parameter.
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2.5.1 Comparison of the Quadratic Bias Functions

The quadratic bias functions of the SRE, SPTE and SE of the slope parameter

β1 are given by

QB2

[
β̂SRE

1

]
= (1− d)2 σ2

Sxx

∆2, (2.5.1)

QB3

[
β̂SPTE

1

]
= (1− d)2 σ2

Sxx

∆2G2
3,ν

(1

3
Fα; ∆2

)
(2.5.2)

and

QB4

[
β̂SE

1

]
= x̄2c2 σ2

Sxx

K2
n

{
2Φ(∆)− 1

}2

(2.5.3)

respectively.

Clearly, under the null-hypothesis, QB2

[
β̂SRE

1

]
= QB3

[
β̂SPTE

1

]
= QB4

[
β̂SE

1

]

= 0 for all d and α. When ∆2 → ∞, QB2

[
β̂SRE

1

]
→ ∞ except at d = 1;

QB3

[
β̂SPTE

1

]
tends to 0 for all α and d; and QB4

[
β̂SE

1

]
→ σ2

Sxx
c2K2

n, a constant

that does not depend on d. Therefore, in terms of quadratic bias, the SRE is

uniformly dominated by both the SPTE and SE.

For very large values of ∆2, the SE is dominated by the SPTE regardless

of the value of α. From a small to moderate values of ∆2, there is no uniform

domination of one estimator over the others. In this case, domination depends

on the level of significance, α. For small values of α, the SPTE is dominated by

the SE, and for larger values of α, the SE is dominated by the SPTE. However,

Chiou and Saleh (2002) suggest the value of α to be between 20% and 25%.

In this interval of α, the quadratic bias of the SPTE is relatively small for not

too small values of ∆2. However, in practice, the non-centrality parameter is

unlikely to be very large (otherwise the credibility of prior information is in

serious question) and α is usually preferred to be small.
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Figure 2.2: The quadratic bias of the SRE, SPTE and SE of the Slope.

The quadratic bias of the SE is relatively stable and is essentially a constant

starting from some moderate value of ∆2. It is unaffected by the choice of the

values of d and α. Therefore, the SE may be a better choice among the three

biased estimators considered in this study. The behaviour of the quadratic

bias functions of the SRE, SPTE and SE of β1 is displayed in Figure 2.2.

2.5.2 Comparison of the Relative Efficiencies

The relative efficiency (Eff) of an estimator is defined as the ratio of the recip-

rocal of the mse function. The performances of the estimators are compared

on the basis of their relative efficiencies.

2.5.2.1 Comparing SRE with UE

The efficiency of β̂SRE
1 relative to β̃1 is denoted by Eff[β̂SRE

1 : β̃1], and is given

by

Eff
[
β̂SRE

1 : β̃1

]
=

[
d2 + (1− d)2∆2

]−1
. (2.5.4)

Based on (2.5.4), the following properties of the SRE are observed.



2.5 Performances Comparison of the Estimators 37

• If the non-sampling prior information is correct, that is, ∆2 = 0,

Eff
[
β̂SRE

1 : β̃1

]
= d−2 > 1, and hence β̂SRE

1 is more efficient than β̃1. Thus,

under the null hypothesis, the SRE of β1 performs better than the UE

of β1.

• If the non-sampling prior information is incorrect (that is, ∆2 > 0) we

study the expression in (2.5.4) as a function of ∆2 for a fixed value of d.

As a function of ∆2, (2.5.4) is a decreasing function with its maximum

value d−2 (> 1) at ∆2 = 0 and minimum value 0 for very large values of

∆2. The relative efficiency equals 1 at ∆2 = 1+d
1−d

. Thus, if ∆2 ∈ [0, 1+d
1−d

)
,

β̂SRE
1 is more efficient than β̃1 and outside this interval β̃1 is more efficient

than β̂SRE
1 . For example, if d = 0.5, β̂SRE

1 is more efficient than β̃1 in

[0, 3), while β̃1 is more efficient than β̂SRE
1 in [3,∞). Also, for d = 0.5 the

maximum efficiency of β̂SRE
1 relative to β̃1 is 4.
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Figure 2.3: The efficiency of the SRE, SPTE and SE relative to the UE for
selected values of d and α.
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2.5.2.2 Comparing SPTE with UE

The efficiency of the SPTE relative to the UE is given by

Eff
[
β̂SPTE

1 : β̃1

]
=

[
1− (1− d2)G3,ν

(1

3
Fα; ∆2

)
+ (1− d)∆2

×
{

2G3,ν

(1

3
Fα; ∆2

)
− (1 + d)G5,ν

(1

5
Fα; ∆2

)}]−1 (2.5.5)

for any fixed d (0 ≤ d ≤ 1) and at a fixed level of significance α. As Fα →∞,

Eff
[
β̂SPTE

1 : β̃1

]
→ [1 − (1 − d2) + (1 − d)2∆2]−1 = [d2 + (1 − d)2∆2]−1 which

is the relative efficiency of β̂SRE
1 relative to β̃1. On the other hand, as Fα → 0,

Eff
[
β̂SPTE

1 : β̃1

]
→ 1. This means that the efficiency of the SPTE is the same

as that of the UE, β̃1.

For varying ∆2, the following properties of the efficiency of the SPTE rel-

ative to the UE are observed.

• Under the null hypothesis, ∆2 = 0, at which the relative efficiency in

(2.5.5) attains its maximum,

[
1− (1− d2)G3,ν

(1

3
Fα; 0

)]−1

≥ 1. (2.5.6)

• As ∆2 grows larger than zero, the relative efficiency function monotoni-

cally decreases, crossing the 1-line for a ∆2-value between 1+d
2

and 1+d
1−d

,

and reaching a minimum for some ∆2 = ∆2
min. It then monotonically

increases and approaches unity from below. The relative efficiency of the

shrinkage preliminary test estimator equals unity whenever

∆2
∗ =

(1 + d)

2− (1 + d)
G5,ν( 1

5
Fα;∆2)

G3,ν( 1
3
Fα;∆2)

(2.5.7)
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where ∆2
∗ lies in the interval

(
1+d
2

, 1+d
1−d

)
. This means that

Eff
[
β̂SPTE

1 : β̃1

]
<
=
>

1 according as ∆2
∗

<
=
>

∆2. (2.5.8)

• Finally, as ∆2 →∞, Eff[β̂SPTE
1 : β̃1] → 1.

In conclusion, the shrinkage preliminary test estimator is more efficient

than the unrestricted estimator whenever ∆2 < ∆2
∗. Otherwise β̃1 is more

efficient than SPTE up to some moderate value of ∆2. For very large values

of ∆2, the efficiency of the SPTE are the same as that of the UE. Figures 2.3

and 2.4 display the efficiency of the SPTE relative to the UE.

2.5.2.3 Comparing SPTE with SRE

As for the efficiency of β̂SPTE
1 relative to β̂SRE

1 we have

Eff
[
β̂SPTE

1 : β̂SRE

1

]
=

[
d2 + (1− d)2∆2

] [
1 + g(∆2)

]−1
(2.5.9)

where

g(∆2) = (1− d)∆2

{
2G3,ν

(1

3
Fα; ∆2

)
− (1 + d)G5,ν

(1

5
Fα; ∆2

)}

− (1 + d2)G3,ν

(1

3
Fα; ∆2

)
. (2.5.10)

• Under the null-hypothesis, ∆2 = 0, and hence

Eff
[
β̂SPTE

1 : β̂SRE

1

]
= d2

[
1− (1− d2)G3,ν

(1

3
Fα; 0

)]−1

≥ d2. (2.5.11)

Combining this result with (2.5.6), we obtain

d2 ≤ Eff
[
β̂SPTE

1 : β̂SRE

1

]
≤ 1 ≤ Eff

[
β̂SPTE

1 : β̃1

]
. (2.5.12)
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Figure 2.4: The efficiency of the SE and SPTE relative to the UE for d = 0
and selected values of α.

• For ∆2 > 0, we have

Eff
[
β̂SPTE

1 : β̂SRE

1

]
<
=
>

1 according as (2.5.13)

∆2 <
=
>

1 + d

1− d

{
1−G3,ν

(
1
3
Fα; ∆2

)}
{

1− 2G3,ν

(
1
3
Fα; ∆2

)
− (1 + d)G5,ν

(
1
5
Fα; ∆2

)} . (2.5.14)

• Finally, as ∆2 → ∞, Eff
[
β̂SPTE

1 ; β̂SRE
1

]
→ 0. Thus, except for a small

interval around 0, β̂SPTE
1 is more efficient than β̂SRE

1 .

2.5.2.4 Comparing SE with UE

The efficiency of β̂SE
1 relative to β̃1 is given by

Eff
[
β̂SE

1 : β̃1

]
=

[
1− 2

π
K2

n

{
2e−∆2/2 − 1

}]−1

. (2.5.15)



2.5 Performances Comparison of the Estimators 41

• Under the null-hypothesis ∆2 = 0, and hence

Eff
[
β̂SE

1 : β̃1

]
=

[
1− 2

π
K2

n

]−1

≥ 1. (2.5.16)

• As ∆2 grows larger than zero, Eff
[
β̂SE

1 : β̃1

]
decreases monotonically from

[
1− 2

π
K2

n

]−1
at ∆2 = 0, crossing unity at ∆2 = ln 4, and approaching

the minimum value
[
1 + 2

π
K2

n

]−1
as ∆2 →∞. Thus, the loss of efficiency

of β̂SE
1 relative to β̃1 is 1 − [

1 + 2
π
K2

n

]−1
, while the gain in efficiency is

[
1− 2

π
K2

n

]−1
, which is achieved at ∆2 = 0. Hence, for ∆2 < ln 4, β̂SE

1

performs better than β̃1. Otherwise β̃1 performs better β̂SE
1 .

• Finally, as ∆2 → ∞ the efficiency of the SPTE relative to the UE ap-

proaches one and that of the SE relative to the UE approaches
[
1 + 2

π
K2

n

]−1
.

Figures 2.3 and 2.4 display the efficiency of the SE relative to the UE.

2.5.2.5 Comparing SE with SRE

The efficiency of β̂SE
1 relative to β̂SRE

1 is given by

Eff
[
β̂SE

1 : β̂SRE

1

]
=

[
d2 + (1− d)2∆2

] [
1− 2

π
K2

n

{
2e−∆2/2 − 1

}]−1

. (2.5.17)

• Under the null-hypothesis ∆2 = 0, and hence

Eff
[
β̂SE

1 : β̂SRE

1

]
= d2

[
1− 2

π
K2

n

]−1
<
=
>

1 (2.5.18)

depending on

d2 <
=
>

(
1− 2

π
K2

n

)−1

. (2.5.19)
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Figure 2.5: The efficiency of the SE relative to the SRE for n = 20 and selected
values of d.

• As ∆2 grows larger than zero, the efficiency of the SE relative to the SRE

increases or decreases depending on the values of d and n.

• Finally, as ∆2 approaches a very large value, the relative efficiency in-

creases unboundedly, except for d = 1. For d = 1 and very large value of

∆2, the relative efficiency of the SE relative to the RE is some constant,

less than one.

Figure 2.5 displays the efficiency of the SE relative to the RE for a range

of values of ∆2.
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Figure 2.6: The efficiency of the SE relative to the SPTE for selected values
of d.

2.5.2.6 Comparing SE with SPTE

In Figure 2.6, the maximum efficiency of the SE relative to the SPTE is at-

tained for ∆2 = 0 and d = 1, regardless of the value of α. At ∆2 = 0, as d

decreases, the relative efficiency of the SE also decreases, and it moves down to

one for very small values of d. Starting from some moderate value of ∆2, the

relative efficiency of the SE becomes less than one and converges to a stable

value, below one, as ∆2 → ∞. Except for ∆2 = 0 and near 0, the relative

efficiency of SE is always higher for smaller values of d than for larger values of
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d. The difference between the relative efficiencies of the SE for different values

of d is higher for lower value of α than for higher values of α. As α increases

this difference decreases. Moreover, as α increases the relative efficiency of the

SE also increases for ∆2 = 0 or near 0.

2.6 Concluding Remarks

The UE is based on the sample data alone, and it is the only unbiased estimator

among the four estimators considered in this chapter. The introduction of

non-sample prior information in the estimation process causes the estimators

to be biased. However, the biased estimators perform better than the unbiased

estimator when they are judged based on the mse criterion. The performance

of the biased estimators depend on the value of ∆. In the case of the SPTE, the

performance also depends on the value of the level of significance. Under the

null hypothesis, the departure parameter is 0 and the SE dominates all other

estimators if α is not too high. As α increases, the performance of the SPTE

improves when ∆ is not too close to zero. At a lower level of significance, the SE

outperforms the SPTE over a wide range of values of ∆. When the value of ∆

is not far from 0, the SE always outperforms the SPTE and SRE. Therefore,

in practice if a researcher postulates a value of β1 from prior knowledge or

experience that is not too far from its true value, the SE would be the best

choice as an improved estimator of the slope.
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2.A Appendix

• The following MATLAB codes are used for producing Figure 2.2.

d=0.25; n=5; v=n-2; D=0:1:30; x=(1-d).^2; B2=x.*D;

plot(D,B2); hold on

G3=ncfcdf(finv(.95,3,v)./3,3,v, D); B3=x.*D.*G3;

plot(D,B3,’r’)

G3=ncfcdf(finv(.9,3,v)./3,3,v, D); B4=x.*D.*G3;

plot(D,B4,’k’)

G3=ncfcdf(finv(.7,3,v)./3,3,v, D); B6=x.*D.*G3;

plot(D,B6,’m’)

K=sqrt(2./(n-2)).*gamma((n-1)./2)./gamma((n-2)./2);

c=sqrt(2).*1./sqrt(pi).*K.*exp(-D./2);

F=normcdf(sqrt(D), 0, 1);

B7=2./pi.*K.^4.*(2.*F-1).^2;

plot(D,B7,’g’)

legend(’SRE’, ’SPTE (\alpha=0.05)’, ’SPTE (\alpha=0.1)’,

’SPTE(\alpha=0.3)’,’SE’,1)

xlabel(’\Delta^2’);

ylabel(’Quadratic Bias’);

title(’For d = 0.25’)

• The following MATLAB codes are used for producing Figure 2.4.

d=0; D=0:0.5:10; q=ones(1,length(D));

plot(D,q)
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hold on

n=20; v=n-2;

G3=ncfcdf(finv(.95,3,v)./3,3,v, D);

G5=ncfcdf(finv(.95,5,v)./5,5,v, D); x=1-d.^2; y=1-d; z=1+d;

R2=1./(1 - x.*G3 + y.*D.*(2.*G3 - z.*G5));

plot(D, R2, ’r’)

G3=ncfcdf(finv(.85,3,v)./3,3,v, D);

G5=ncfcdf(finv(.85,5,v)./5,5,v, D);

R3=1./(1-x.*G3 +y.*D.*(2.*G3-z.*G5));

plot(D, R3, ’k’)

G3=ncfcdf(finv(.75,3,v)./3,3,v, D);

G5=ncfcdf(finv(.75,5,v)./5,5,v, D);

R4=1./(1 - x.*G3 +y.*D.*(2.*G3- z.*G5));

plot(D, R4, ’m’)

k=sqrt(2./(n-2)).*gamma((n-1)./2)./gamma((n-2)./2);

R4=1./(1-2.*(1./pi).*k.^2.*(2.*exp(-D./2)-1));

plot(D, R4, ’b-.’)

legend (’UE’, ’PTE(\alpha=0.05)’, ’PTE(\alpha=0.15)’,’PTE

(\alpha=0.25)’, ’SE’,1) xlabel(’\Delta^2’);

ylabel(’Relative efficiency’)



Chapter 3

Estimation of the Intercept
Parameter of Simple Linear
Regression Model

3.1 Introduction

In Chapter 2 we studied the performances of the three improved estimators,

SRE, SPTE and SE, of the slope parameter β1 of the simple linear regression

model (2.1.1). The focus of this chapter is on the estimation of the intercept

parameter β0 assuming that uncertain non-sample prior information on the

value of the slope parameter β1 is available, either from previous study or

from practical experience of a researcher or expert. It is well known that the

estimation of the intercept parameter involves that of the slope parameter. As

a result, an estimator of β1 is required in the definition of the estimator of β0.

Let the non-sample prior information about the value of β1 be expressed

in the form of the null hypothesis in (2.1.2). We wish to combine both the

sample data and the uncertain non-sample prior information on the value of

β1 in estimating the intercept parameter β0. Similar to the estimation of the

47
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slope parameter, we introduce a coefficient of distrust d (0 ≤ d ≤ 1) for the

non-sample prior information that represents the degree of distrust in the null

hypothesis in (2.1.2). First we define the UE of the unknown intercept β0

from the likelihood function of the parameter of the model based on a random

sample. Based on the unrestricted and restricted (by the null hypothesis) esti-

mators of σ2, we define the likelihood ratio test for testing the null hypothesis.

Then we use the coefficient of distrust, as well as the sample and non-sample

prior information, to define the shrinkage restricted estimator. Using the pre-

liminary test approach we define the shrinkage preliminary test and shrinkage

estimators of the unknown population intercept β0. The coefficient of distrust

d is introduced to both the SPTE and SE of β0.

To compare the performances of the estimators of the intercept parame-

ter, their bias, mean square error and relative efficiency functions have been

analysed both analytically and graphically. The analyses reveal that although

there is no uniformly superior estimator with respect to both unbiasedness

and mse criteria, the shrinkage estimator dominates the other two biased es-

timators if the non-sample prior information regarding the value of the slope

parameter is not too far from its true value. In practice, the non-sample prior

information is usually obtained from past experience or expert knowledge and

hence it is expected that such information will not be too far from the true

value.

The layout of this chapter is as follows. Some preliminaries are provided

in Section 3.2. The three alternative estimators of the intercept parameter

are defined in Section 3.3. Expressions of the bias and mse functions of the

estimators are derived in Section 3.4. A comparative study of the quadratic
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biases and relative efficiencies of the estimators are included in Section 3.5.

Some concluding remarks are presented in Section 3.6. Selected MATLAB

codes, used for producing graphs, are presented in Appendix 3.A.

3.2 Some Preliminaries

Based on the random sample observations (xi, yi) for i = 1, 2, . . . , n, the UE

of the intercept β0 is given by

β̃0 = ȳ − β̃1x̄ (3.2.1)

where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi and β̃1 is the UE of the slope β1, given by

the expression (2.2.4).

It is well known that for the normal model, the sampling distribution of

the UE of β0 is normal with mean and variance given by

E
[
β̃0

]
= β0 (3.2.2)

and

Var
[
β̃0

]
= σ2H (3.2.3)

respectively, in which H =
(

1
n

+ x̄2

Sxx

)
and Sxx =

∑n
i=1(xi − x̄)2. Therefore,

the bias and mse (variance) functions of the unrestricted estimator of β0 are

given by

B1

[
β̃0

]
= E

[
β̃0 − β0

]
= 0 (3.2.4)

and

M1

[
β̃0

]
= σ2H (3.2.5)
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respectively.

The above bias and mean square error functions are compared with those

of the SRE, SPTE and SE to investigate the relative performance of the esti-

mators under various conditions.

3.3 Proposed Improved Estimators of the

Intercept

Consider a convex combination of β̃0 = ȳ−β̃1x̄ (the mle of β0) and β̂0 = ȳ−β̂1x̄

(the mle of β0 under the null hypothesis in (2.1.2)), as

β̂SRE

0 = dβ̃0 + (1− d)β̂0. (3.3.1)

The estimator β̂SRE
0 is called the shrinkage restricted estimator (SRE) of the

intercept parameter β0, where d is the degree of distrust on the null hypothesis.

Here, d = 0 means that there is no distrust in H0, and then we get β̂SRE
0 = β̂0

(complete reliance on the prior information), while d = 1 means that there is

complete distrust on H0, and we then get β̂SRE
0 = β̃0 (exclusive sample infor-

mation based estimator). If 0 < d < 1 (that is, the degree of distrust is an

intermediate value between 0 and 1) then the SRE of β0 yields an interpolated

value between β̂0 and β̃0 given by (3.3.1).

Following Khan and Saleh (2001), the shrinkage preliminary test estimator

of the intercept parameter β0 is defined as

β̂SPTE

0 = β̂SRE

0 I(F < Fα) + β̃0 I
(
F ≥ Fα

)

= β̂SRE

0 I(F < Fα) + β̃0{1− I(F < Fα)}

= β̃0 + β̂SRE

0 I(F < Fα)− β̃0 I(F < Fα)
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= β̃0 + {dβ̃0 + (1− d)β̂0} I(F < Fα)− β̃0 I(F < Fα)

= β̃0 + (1− d)β̂0 I(F < Fα)− (1− d)β̃0 I(F < Fα)

= β̃0 − (1− d)(β̃0 − β̂0) I(F < Fα)

= β̃0 − (1− d) (β̃0 − β̂0) I(F < Fα) (3.3.2)

where I(A) is an indicator function of the set A, and Fα is the (1−α)th upper

quantile of the central F distribution with (1, ν) degrees of freedom. For d = 0,

the shrinkage preliminary test estimator becomes

β̂SPTE

0 = β̃0 − (β̃0 − β̂0) I(F < Fα), (3.3.3)

the preliminary test estimator of β0.

As shown in Chapter 2, the performance of the SPTE depends on the choice

of the level of significance α of the preliminary test. Therefore, we define a

shrinkage estimator (SE) that does not depend on α. The SE of β0 is

β̂SE

0 = β̂SRE

0 + (1− c|t|−1)(β̃0 − β̂SRE

0 )

= β̃0 − c|t|−1(β̃0 − β̂SRE

0 )

= β̃0 − c|t|−1(1− d)(β̃0 − β̂0)

= β̃0 + (1− d)c|t|−1x̄(β̃1 − β̂1)

= β̃0 + (1− d)
cSnx̄√

Sxx|β̃1 − β10|
(β̃1 − β̂1) (3.3.4)

where t is the test statistic to test the null hypothesis and c is the shrinkage

constant, a function of n. Unlike the Stein-type SE, the SE in (3.3.4) is admis-

sible over the UE for one-dimensional populations (see sub-subsection 3.5.2.3).
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3.4 Some Statistical Properties

In this section, the bias and mean square error (mse) functions of the SRE,

SPTE and SE are derived. Also, some important features of these functions

are discussed.

3.4.1 The Bias and MSE of the SRE

Theorem 3.47 The bias function of the shrinkage restricted estimator of the

intercept parameter β0 of the simple linear regression model is given by

B2

[
β̂SRE

0

]
= (1− d)

x̄σ√
Sxx

∆ (3.4.1)

where ∆ = S
1/2
xx (β1 − β10)σ

−1.

Proof. By definition, the bias function of the SRE of β0 is

B2

[
β̂SRE

0

]
= E

[
β̂SRE

0 − β0

]

= E
[
dβ̃0 − β0 + (1− d)β̂0

]

= dβ0 − β0 + (1− d)β̂0

= −(1− d)β0 + (1− d)β̂0

= −(1− d)(ȳ − β1x̄) + (1− d)(ȳ − β10x̄)

= (1− d)x̄(β1 − β10)

= (1− d)
x̄σ√
Sxx

∆ . (3.4.2)

This completes the proof of the theorem.

Theorem 3.48 The mean square error function of the shrinkage restricted

estimator of the intercept parameter β0 of the simple linear regression model
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is given by

M2

[
β̂SRE

0

]
= σ2

[
d2H +

(1− d)2x̄2∆2

Sxx

]
(3.4.3)

where ∆2 is the non-centrality parameter of non-central F distribution, a func-

tion of the distance between the true value of β1 and that under the null hy-

pothesis.

Proof. By definition, the mse function of the SRE of β0 is

M2

[
β̂SRE

0

]
= E

[
β̂SRE

0 − β0

]2

= E
[
dβ̃0 − β0 + (1− d)β̂0

]2

= E
[
dβ̃0 − dβ0 − (1− d)β0 + (1− d)β̂0

]2

= E
[
d(β̃0 − β0)− (1− d)(β0 − β̂0)

]2

= d2 E
[
β̃0 − β0

]2

− (1− d)2 E
[
β0 − β̂0

]2

= d2σ2H + (1− d)2 (ȳ − β1x̄− ȳ + β10x̄)2

= d2σ2H + (1− d)2x̄2 (β1 − β10)
2

= d2σ2H +
(1− d)2x̄2∆2

Sxx

= σ2

[
d2H +

(1− d)2x̄2∆2

Sxx

]
. (3.4.4)

This completes the proof of the theorem.

Under the null hypothesis, the value of the parameter ∆2 is 0, while under

the alternative hypothesis it takes a positive value. The performances of the

estimators SRE, SPTE and SE change with the change in the value of ∆2. We

investigate this feature in a greater detail in the forthcoming sections.
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3.4.2 The Bias and MSE of the SPTE

Theorem 3.49 The bias function of the shrinkage preliminary test estimator

of the intercept parameter β0 of the simple linear regression model is given by

B3

[
β̂SPTE

0

]
= (1− d)

x̄σ√
Sxx

∆ G3,ν

(
1

3
Fα; ∆2

)
(3.4.5)

where Ga,b(·; ∆2) is the cumulative distribution function of the non-central F

distribution with (a, b) degrees of freedom and non-centrality parameter ∆2.

Proof. By definition, the bias function of the SPTE of β0 is

B3

[
β̂SPTE

0

]
= E

[
β̂SPTE

0 − β0

]

= E
[
β̃0 − β0 − (1− d) (β̃0 − β̂0) I(F < Fα)

]

= −(1− d) E
[
(β̃0 − β̂0) I(F < Fα)

]

= −(1− d) E
[
(ȳ − β̃1x̄− ȳ + β10x̄) I(F < Fα)

]

= (1− d)x̄ E
[
(β̃1 − β10) I(F < Fα)

]

= (1− d)
x̄σ√
Sxx

E

[√
Sxx(β̃1 − β10)

σ
I

(√
Sxx(β̃1 − β10)

2

S2
n

< Fα

)]
.

(3.4.6)

Note Z =
√

Sxx(β̃1 − β10)σ
−1 is distributed as N(∆, 1), and νσ−2S2

n is dis-

tributed as a central chi-square variable with ν degrees of freedom.

Applying Theorem 1, Appendix B2, Judge and Bock (1978), to the right

hand side of (3.4.6), the bias function of the SPTE of β0 is obtained as

B3

[
β̂SPTE

0

]
= (1− d)

x̄σ√
Sxx

∆ G3,ν

(
1

3
Fα; ∆2

)
. (3.4.7)

This completes the proof of the theorem.
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Theorem 3.410 The mean square error function of the shrinkage preliminary

test estimator of the intercept parameter β0 of the simple linear regression

model is given by

M3

[
β̂SPTE

0

]
= σ2H +

x̄2σ2

Sxx

[
∆2

{
2(1− d) G3,v

(
1

3
Fα; ∆2

)
− (1− d2)

×G5,v

(
1

5
Fα; ∆2

) }
− (1− d2) G3,v

(
1

3
Fα; ∆2

)]
(3.4.8)

where Ga, b(·; ∆2) is the c.d.f. of the non-central F distribution with (a, b)

degrees of freedom and non-centrality parameter ∆2.

Proof. By definition, the mse function of the SPTE of β0 is

M3

[
β̂SPTE

0

]
= E

[
β̂SPTE

0 − β0

]2

= E
[
(β̃0 − β0)− (1− d) (β̃0 − β̂0) I(F < Fα)

]

= E
[
β̃0 − β0

]2

+ (1− d)2E
[
(β̃0 − β̂0)

2 I(F < Fα)
]

− 2(1− d) E
[
(β̃0 − β0)(β̃0 − β̂0) I(F < Fα)

]

= σ2H + (1− d)2E
[
(β̃0 − β̂0)

2 I(F < Fα)
]

− 2(1− d) E
[
(β̃0 − β0)(β̃0 − β̂0) I(F < Fα)

]
. (3.4.9)

The second term of the right hand side of (3.4.9) is

(1− d)2E
[
(β̃0 − β̂0)

2 I(F < Fα)
]

= (1− d)2x̄2E
[
(β̃1 − β10)

2 I(F < Fα)
]

= (1− d)2 x̄2σ2

Sxx

E

[
Sxx(β̃1 − β10)

2

σ2

×I

(
Sxx(β̃1 − β10)

2

S2
n

< Fα

)]
. (3.4.10)

Applying Theorem 3, Appendix B2, Judge and Bock (1978), to the right
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hand side of (3.4.10), we get

(1− d)2E
[
(β̃0 − β̂0)

2 I(F < Fα)
]

= (1− d)2 x̄2σ2

Sxx

G3,ν

(
1

3
Fα; ∆2

)

+ (1− d)2 x̄2σ2

Sxx

∆2 G5,ν

(
1

5
Fα; ∆2

)
.

(3.4.11)

The last term of the right hand side of (3.4.9) is

− 2(1− d) E
[
(β̃0 − β0)(β̃0 − β̂0) I(F < Fα

)]

= −2(1− d)x̄2 E
[
(β̃1 − β1)(β̃1 − β10) I(F < Fα)

]

= −2(1− d)x̄2 E
[
{(β̃1 − β10)− (β1 − β10)}(β̃1 − β10) I(F < Fα)

]

= −2(1− d)x̄2
{

E
[
(β̃1 − β10)

2 I(F < Fα)
]

− σ√
Sxx

∆ E
[
(β̃1 − β10) I(F < Fα)

]}
. (3.4.12)

Applying Theorems 1 and 3, Appendix B2, Judge and Bock (1978), to the

right hand side of (3.4.12), we get

2(1− d) E
[
(β̃0 − β0)(β̃0 − β̂0) I(F < Fα

)]

= −2(1− d)
x̄2σ2

Sxx

[
G3,ν

(
1

3
Fα; ∆2

)
+ ∆2 G5,ν

(
1

5
Fα; ∆2

)

−∆2 G3,ν

(
1

3
Fα; ∆2

)]
. (3.4.13)

Collecting all terms on the right hand side of (3.4.9), the mse function of

the SPTE of β0 is obtained as

M3

[
β̂SPTE

0

]
= σ2H +

x̄2σ2

Sxx

[
∆2

{
2(1− d) G3,v

(
1

3
Fα; ∆2

)
− (1− d2)

×G5,v

(
1

5
Fα; ∆2

) }
− (1− d2) G3,v

(
1

3
Fα; ∆2

)]
. (3.4.14)

This completes the proof of the theorem.
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3.4.2.1 Some Properties of the MSE of the SPTE

Here we provide some analytical discussion of the mean square error function

of the SPTE for varying values of ∆2.

• Under the null hypothesis, ∆2 = 0, in which case the mse of β̂SPTE
0 ,

M3

[
β̂SPTE

0

]
= σ2H − σ2x̄2

Sxx

(1− d2)G3,v

(1

3
Fα; ∆

)
< σ2H, (3.4.15)

the mse of β̃0. Thus, when ∆2 = 0 the SPTE of β0 performs better than

the UE.

As α → 0, G3,ν

(
1
3
Fα; 0

)
→ 1. Therefore,

M3

[
β̂SPTE

0

]
= σ2H− x̄2σ2

Sxx

(1−d2) G3,v

(
1

3
Fα; ∆2

)
→ σ2H− x̄2σ2

Sxx

(1−d2)

which is the mse of β̂SRE
0 at ∆ = 0. On the other hand, as Fα → 0,

G3,ν

(
1
3
Fα; 0

)
→ 0. Then

M3

[
β̂SPTE

0

]
= σ2H − x̄2σ2

Sxx

(1− d2) G3,v

(
1

3
Fα; ∆2

)
→ σ2H, (3.4.17)

the mse of β̃0.

• As ∆2 → ∞, Gm,ν

(
1
m

Fα; ∆2
)
→ 0, and hence from (3.4.8), the mse of

the SPTE tends towards that of the UE.

• Since G3,ν

(
1
3
Fα; ∆2

)
is always greater than G5,ν

(
1
5
Fα; ∆2

)
for any value

of α, replacing G5,ν

(
1
5
Fα; ∆2

)
by G3,ν

(
1
3
Fα; ∆2

)
, the expression of the

mse function of the SPTE of β0 in (3.4.8) yields

M3

[
β̂SPTE

0

]
≥ σ2H +

x̄2σ2

Sxx

[
(1− d) G3,ν

(1

3
Fα; ∆2

) {
∆2(1− d)− (1 + d)

} ]

≥ σ2H, whenever ∆2 >
1 + d

1− d
.
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On the other hand, (3.4.8) may be rewritten as

M3

[
β̂SPTE

0

]
= σ2H +

x̄2σ2

Sxx

[
1 + (1− d)G3,ν

(1

3
Fα; ∆2

){
2∆2 − (1 + d)

}

− (1− d2)G5,ν

(1

5
Fα; ∆2

)]
≤ σ2H (3.4.18)

whenever ∆2 < 1+d
2

. Therefore, the mse of β̂SPTE
0 as a function of ∆2

crosses the constant line M
[
β̃0

]
= σ2H in the interval

(
1+d
2

, 1+d
1−d

)
.

A general picture of the mse graph may be described as follows:

The mse function of the SPTE has minimum value at ∆2 = 0. As ∆2 grows

larger, the function increases monotonically, crossing the constant line σ2H in

the interval
(

1+d
2

, 1+d
1−d

)
, and reaching the maximum in the interval

(
1+d
1−d

, ∞)

before monotonically decreasing towards σ2H as ∆2 →∞.

3.4.2.2 Determination of Optimum α for the SPTE

Clearly, the mse function, and hence the efficiency of the shrinkage preliminary

test estimator relative to the unrestricted estimator, depends on the level of

significance α of the test and the non-centrality parameter ∆2.

Let the efficiency of the SPTE relative to the UE be denoted by Eff(α; ∆2)

which is given by

Eff(α; ∆2) = [1 + g1(∆
2)]−1 (3.4.19)

where

g1(∆
2) =

x̄2

HSxx

[
(1− d)∆2

{
2 G3,ν

(1

3
Fα; ∆2

)
− (1 + d)

×G5,ν(
1

5
Fα; ∆2

)}
− (1− d2) G3,ν

(1

3
Fα; ∆2

)]
. (3.4.20)
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The efficiency function attains its maximum at ∆2 = 0 for all α, given by

Eff(α; 0) =

[
1− (1− d2)

x̄2

HSxx

G3,ν

(1

3
Fα; 0

)]−1

≥ 1. (3.4.21)

As ∆2 departs from the origin, Eff(α; ∆2) decreases monotonically crossing the

line Eff(α; ∆2) = 1 in the interval
(

1+d
2

, 1+d
1−d

)
to a minimum at ∆2 = ∆2

min.

Then from that point increases monotonically towards 1 as ∆2 → ∞ from

below. Now, for ∆2 = 0 and varying significance level, we have

max
α

Eff(α, 0) = Eff(0, 0) =

[
1− (1− d2)

x̄2

HSxx

]−1

. (3.4.22)

As a function of α, Eff(α; 0) decreases as α increases. On the other hand,

Eff(α; ∆2) as a function of ∆2 is decreasing, and the curves Eff(0; ∆2) and

Eff(1/2; ∆2) = 1 intersect at ∆2 = 1+d
1−d

. The value of ∆2 at the intersection

decreases as α increases. Therefore, for two different levels of significance say,

α1 and α2, Eff(α1; ∆
2) and Eff(α2; ∆

2) intersect below 1. In order to choose

an optimum level of significance with maximum relative efficiency we adopt

the following rule.

If it is known that 0 ≤ ∆ ≤ 1+d
1−d

, β̂0 is always chosen since Eff(0, ∆2)

is maximum for all ∆2 in this interval. Generally, ∆2 is unknown. In this

case there is no way of choosing a uniformly best estimator of β0. Thus, we

pre-assign a tolerable relative efficiency, say Eff0. Then, consider the set

Aα =
{
α|Eff(α; ∆2) ≥ Eff0

}
. (3.4.23)

An estimator β̂SPTE
0 is chosen which maximizes Eff(α; ∆2) over all α ∈ Aα and

∆2. For any given Effo, solving the equation

max
α

min
∆2

Eff(α; ∆2) = Eff0 (3.4.24)
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Table 3.1: Maximum and minimum efficiencies of the SPTE of the intercept
parameter relative to the UE for d = 0.2.

Sample size, n
α 10 15 20 25 30 35 40

0.05 Eff∗ 2.4395 2.3064 2.2457 2.2114 2.1894 2.1742 2.1630
Effo 0.4810 0.5182 0.5347 0.5441 0.5501 0.5542 0.5573
∆o 5.5700 4.9600 4.6300 4.5300 4.3400 4.3300 4.2600

0.10 Eff∗ 1.9192 1.8503 1.8201 1.8033 1.7926 1.7852 1.7798
Effo 0.5822 0.6091 0.6209 0.6274 0.6316 0.6345 0.6366
∆o 4.6900 4.2800 4.0600 4.0600 3.9600 3.8800 3.8700

0.15 Eff∗ 1.6755 1.6336 1.6156 1.6057 1.5994 1.5951 1.5920
Effo 0.6492 0.6695 0.6694 0.6782 0.6830 0.6861 0.6897
∆o 4.3200 4.0300 3.9500 3.7700 3.7800 3.6700 3.6400

0.20 Eff∗ 1.5270 1.4997 1.4881 1.4818 1.4779 1.4752 1.4732
Effo 0.7000 0.7155 0.7220 0.7257 0.7280 0.7295 0.7307
∆o 3.9900 3.6800 3.6400 3.6500 3.4900 3.5400 3.4600

0.25 Eff∗ 1.4245 1.4061 1.3985 1.3944 1.3918 1.3900 1.3887
Effo 0.7411 0.7529 0.7579 0.7606 0.7624 0.7635 0.7644
∆o 3.8100 3.5700 3.4900 3.4500 3.4300 3.4100 3.4100

0.35 Eff∗ 1.2895 1.2809 1.2775 1.2756 1.2745 1.2738 1.2733
Effo 0.8053 0.8120 0.8148 0.8163 0.8173 0.8179 0.8183
∆o 3.5200 3.3400 3.2800 3.2300 3.1900 3.1800 3.2200

0.50 Eff∗ 1.1696 1.1672 1.1664 1.1660 1.1658 1.1657 1.1656
Effo 0.8747 0.8772 0.8781 0.8786 0.8789 0.8791 0.8792
∆o 3.2100 3.0800 3.0900 3.0900 3.0300 2.9900 3.0100

for α, the solution α∗ provides an optimal choice of α, and the procedure is

known as maximin rule of the optimum level of significance of the preliminary

test. Table 3.1 provides the maximum and minimum relative efficiencies Eff∗

and Effo respectively, of the SPTE relative to the UE, of β0 for selected values of

α. It also provides the value ∆ = ∆o at which the minimum relative efficiency

occurs. For example, if a practitioner has a sample of size 20, chooses d = 0.2

and wishes to achieve the minimum relative efficiency 0.7220 of the SPTE, the

recommended value of α is 0.20.
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3.4.3 The Bias and MSE of the SE

Following Bolfarine and Zacks (1992), the bias and mse functions of the SE of

β0 are derived and presented in the following theorems.

Theorem 3.411 The bias function of the shrinkage estimator of the intercept

parameter β0 of the simple linear regression model is given by

B4

[
β̂SE

0

]
= (1− d)

cx̄σ√
Sxx

Kν{1− 2 Φ(−∆)} (3.4.25)

where Kν =
√

2
n−2

Γ(n−1
2 )

Γ(n−2
2 )

and Φ(−∆) is the c.d.f. of the standard normal

distribution evaluated at −∆.

Proof. By definition, the bias function of the shrinkage estimator of the

intercept parameter β0 is

B4

[
β̂SE

0

]
= E

[
β̂SE

0 − β0

]

= E

[
β̃0 − β0 + (1− d)

cSnx̄√
Sxx|β̃1 − β10|

(β̃1 − β̂1)

]

= (1− d) E

[
cSnx̄√

Sxx|β̃1 − β10|
(β̃1 − β̂1)

]

= (1− d)
cx̄√
Sxx

E[Sn] E

[
Z

|Z|
]

(3.4.26)

where Z =
√

Sxx(β̃1−β10)
σ

∼ N (∆, 1).

Recollecting the expressions for E[Sn] and E
[

Z
|Z|

]
from (2.4.29) and (2.4.30)

respectively, and substituting them into (3.4.26), the bias function of the SE

of β0 is obtained as

B4

[
β̂SE

0

]
= (1− d)

cx̄σ√
Sxx

Kν{1− 2Φ(−∆)} (3.4.27)

where Kν =
√

2
n−2

Γ(n−1
2 )

Γ(n−2
2 )

and Φ(−∆) is the c.d.f. of the standard normal

distribution evaluated at −∆. This completes the proof of the theorem.
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From (3.4.27), the quadratic bias function of the SE of β0 is obtained as

QB4

[
β̂SE

0

]
= (1− d)2 c2x̄2σ2

Sxx

K2
ν{1− 2 Φ(−∆)}2

= (1− d)2 c2x̄2σ2

Sxx

K2
ν{2 Φ(∆)− 1}2. (3.4.28)

Theorem 3.412 The mean square error function of the shrinkage estimator

of the intercept parameter β0 of the simple linear regression model is given by

M4

[
β̂SE

0

]
= σ2

[
1

n
+

x̄2

Sxx

{
1 + (1− d)2c2 − 2(1− d)cKν

√
2

π
e−∆2/2

}]
.

(3.4.29)

Proof. By definition, the mse function of the SE of β0 is

M4

[
β̂SE

0

]
= E

[
β̂SE

0 − β0

]2

= E
[
β̃0 − β0

]2

+ (1− d)2 c2x̄2

Sxx

E

[
S2

n(β̃1 − β10)
2

|β̃1 − β10|2

]

+
2(1− d)cx̄√

Sxx

E

[
(β̃0 − β0)

Sn(β̃1 − β10)

|β̃1 − β10|

]

= σ2H + (1− d)2 c2x̄2σ2

Sxx

− 2c(1− d)
x̄2σ2Kν

Sxx

×
{

E [|Z|]−∆ E

[
Z

|Z|
]}

(3.4.30)

where Z ∼ N (∆, 1).

Recollecting the expressions for E[|Z|] and E[Z/|Z|] from (2.4.36) and

(2.4.30) respectively, and substituting them into (3.4.30), the mse function

of the shrinkage estimator of β0 is obtained as

M4

[
β̂SE

0

]
= σ2

[
1

n
+

x̄2

Sxx

{
1 + (1− d)2c2 − 2(1− d)cKν

√
2

π
e−∆2/2

}]
.



3.5 Performance Comparison of the Estimators 63

3.4.3.1 Determination of the Optimum Value of c

A stationary point of M4

[
β̂SE

0

]
with respect to c occurs when the first derivative

(with respect to c)

M′
4

[
β̂SE

0

]
=

x̄2σ2

Sxx

[
2(1− d)2c− 2(1− d)Kν

√
2

π
e−∆2/2

]
= 0

or

2(1− d)2c = 2(1− d)Kν

√
2

π
e−∆2/2 ,

from which

c = (1− d)−1Kν

√
2

π
e−∆2/2 = c∗ (say). (3.4.32)

The second derivative of M4

[
β̂SE

0

]
with respect to c is

M′′
4

[
β̂SE

0

]
=

2x̄2σ2(1− d)2

Sxx

> 0. (3.4.33)

Therefore, c∗ is the value of c which minimizes (3.4.29). Clearly, the opti-

mum value of c depends on ∆2 as shown in (3.4.32).

To make c∗ independent of ∆2 we choose c0 = (1− d)−1
√

2
π
Kν . Hence, the

optimum M4

[
β̂SE

0

]
, say M∗

4

[
β̂SE

0

]
becomes

M∗
4

[
β̂SE

0

]
= σ2

[
1

n
+

x̄2

Sxx

{
1 +

2

π
K2

ν

(
1− 2e−∆2/2

)}]
. (3.4.34)

3.5 Performance Comparison of the

Estimators

The quadratic bias and relative efficiency functions of the SRE, SPTE and SE

relative to the UE are analysed in this section.



3.5 Performance Comparison of the Estimators 64

3.5.1 Comparison of the Quadratic Bias Functions

Here the bias functions of the three biased estimators are analysed by analyzing

their quadratic bias functions. Also, a best-performed estimator is proposed,

under certain conditions.

The quadratic bias functions of the SRE, SPTE and SE of the intercept

parameter β0 are given by

QB2

[
β̂SRE

0

]
=

x̄2σ2

Sxx

(1− d)2∆2, (3.5.1)

QB3

[
β̂SPTE

0

]
=

x̄2σ2

Sxx

(1− d)2∆2G2
3,ν

(1

3
Fα; ∆2

)
(3.5.2)

and

QB4

[
β̂SE

0

]
=

σ2x̄2

Sxx

K2
ν{2 Φ(∆)− 1}2 (3.5.3)

respectively. Note that in the derivation of QB4

[
β̂SE

0

]
the optimal value of

the shrinkage constant has been used, and as a result the factor involving d

in QB4

[
β̂SE

0

]
cancels out. Figure 3.1 displays the graphs of the quadratic bias

functions of the SRE, SPTE and SE of β0.

Under the null-hypothesis, ∆2 = 0 and hence the quadratic biases of the

SRE, SPTE and SE are all 0 for all d and α. It is observed that as ∆2 →∞,

QB2

[
β̂SRE

0

]
→ ∞ except for d = 1; QB3

[
β̂SPTE

0

]
→ 0 for all α and d; and

QB4

[
β̂SE

0

]
→ x̄2σ2

Sxx
K2

ν , a constant not depending on d. Therefore, in terms of

the quadratic bias, the SRE is uniformly dominated by both the SPTE and SE

except for d = 1. Also, for very large values of ∆2 the SE is dominated by the

SPTE regardless of the value of α. From some small to moderate values of ∆2,

there is no uniform domination of one estimator over the others. In this case,

domination depends on the level of significance α and the degree of distrust d.
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Figure 3.1: The QBs of the SRE, SPTE and SE for selected values of d.

However, Chiou and Saleh (2002) suggested the value of α to be between 20%

and 25%. In this interval for α, the quadratic bias of the SPTE approaches

zero for some relatively large value of ∆2. If there is complete distrust of the

null hypothesis, the quadratic biases of the RE and SPTE become 0 for any

α and ∆2, while that of the SE remains greater than 0 except for ∆2 = 0.

As the prior information is usually obtained from previous studies or expert

knowledge, in practice, the chance of the non-centrality parameter being very

large is very slim and α is usually preferred to be reasonably small. Also, the

quadratic bias of the SE is relatively stable and approaches a constant value

starting from some moderate value of ∆2 and is unaffected by the choice of d
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and α. Although the quadratic bias of the SE stabilizes to a constant for some

moderate value of ∆2, it does not outperform the SPTE except for very small

α and d near 0.

3.5.2 Comparison of the Relative Efficiencies

3.5.2.1 Comparing SRE with UE

The efficiency function of the SRE relative to the UE is

Eff
[
β̂SRE

0 : β̃0

]
= H

[
d2H + (1− d)2 x̄2

Sxx

∆2

]−1

. (3.5.4)

The efficiency function of the SRE relative to the UE takes its highest

possible value at ∆2 = 0 for d = 0. As ∆2 increases, the efficiency function

decreases for all d. It crosses the 1-line at some value of ∆2 near zero and for

some moderate to large value of ∆2 approaches 0. For d = 1, the SRE and UE

are equally efficient regardless of the value of ∆2.

From (3.5.4), the following conclusions are drawn:

• Under H0, ∆2 = 0 and hence Eff
[
β̂SRE

0 : β̃0

]
= d−2 ≥ 1. When d = 0,

the efficiency function of the SRE grows unboundedly large. As d grows

larger from 0, the efficiency decreases, and finally reaches 1-line for d = 1.

Therefore, under H0, the SRE is a better choice than the UE.

• As ∆2 grows larger, the efficiency function grows smaller, and finally as

∆2 →∞, Eff
[
β̂SRE

0 ; β̃0

]
→ 0 except for d = 1. As d → 1, Eff

[
β̂SRE

0 ; β̃0

]
→

1 from below regardless of the value of ∆2. Therefore, for any large value

of ∆2, the UE is a better choice than the SRE.
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Figure 3.2: The efficiency of the SRE relative to the UE for selected d-values.

In general, the efficiency of the SRE relative to the UE is a decreasing function

of ∆2 with it’s maximum value d−2(≥ 1) at ∆2 = 0 and minimum value 0 at

∆2 = ∞, unless d = 1. The efficiency of the SRE equals 1 at ∆2 = H(1+d)Sxx

(1−d)x̄2 .

Thus, if ∆2 ∈
[
0, H(1+d)Sxx

(1−d)x̄2

]
, the SRE is more efficient than the UE, otherwise,

the reverse is true. However, in practice the non-sample prior information is

usually obtained from some previous experience or expert knowledge and hence

it is very likely that ∆2 would be close to 0. Therefore, for ∆2 = 0 or near

0, the restricted estimator is a better choice than the unrestricted estimator.

Figure 3.2 displays the change in the efficiency of the SRE relative to the UE

for change in the value of ∆2.
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3.5.2.2 Comparing SPTE with UE and SRE

The efficiency of the SPTE relative to the UE and SRE are respectively

Eff
[
β̂SPTE

0 : β̃0

]
= H

[
H +

x̄2σ2

Sxx

g1(∆
2)

]−1

(3.5.5)

and

Eff
[
β̂SPTE

0 : β̂SRE

0

]
=

[
d2H + (1− d)2∆2 x̄2

Sxx

] [
H +

x̄2

Sxx

g1(∆
2)

]−1

(3.5.6)

where

g1(∆
2) = ∆2

{
2(1− d) G3,v

(1

3
Fα; ∆2

)
− (1− d2)

×G5,v

(1

5
Fα; ∆2

)}
− (1− d2) G3,v

(1

3
Fα; ∆2

)
.

(3.5.7)

From the expressions in (3.5.5) and (3.5.6), the following conclusions are drawn.

• Under H0, ∆2 = 0 and the relative efficiency functions become

Eff
[
β̂SPTE

0 : β̃0

]
= H

[
H − (1− d2)

x̄2σ2

Sxx

G3,v

(1

3
Fα; 0

)]−1

(3.5.8)

and

Eff
[
β̂SPTE

0 : β̂SRE

0

]
= d2H

[
H − (1− d2)

x̄2σ2

Sxx

G3,ν

(1

3
Fα; 0

)]−1

. (3.5.9)

Therefore, for any fixed d (< 1) the maximum efficiency of the SPTE

relative to the UE occurs at ∆2 = 0 while the minimum relative efficiency

of the SPTE relative to the SRE occurs at ∆2 = 0. As d grows larger,

the maximum efficiency of the SPTE relative to the UE decreases while

the minimum efficiency of the SPTE relative to the SRE increases. For

d = 1, the efficiencies of the SPTE, SRE and UE are all equal regardless

of the values of α and ∆2.
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Figure 3.3: The efficiency of the SPTE relative to the UE and SRE for selected
values of d.

• As ∆2 grows larger, the efficiency of the SPTE relative to the UE goes

down and crosses the 1-line at

∆2
∗ =

(1 + d)G3,ν(
1
3
Fα; ∆2)

2G3,ν(
1
3
Fα; ∆2)− (1 + d)G5,ν(

1
5
Fα; ∆2)

while the efficiency of the SPTE compared to the SRE goes up and

crosses the 1-line at

∆2
∗∗ =

(1 + d)
{

1−G3,ν

(
1
3
Fα; ∆2

)}

(1− d)
{

1− 2 G3,ν

(
1
3
Fα; ∆2

)
− (1 + d) G5,ν

(
1
5
Fα; ∆2

)} .

(3.5.11)

• Finally, as ∆2 → ∞, Eff
[
β̂SPTE

0 : β̃0

]
→ 1 regardless of the value of
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d and α, while the efficiency of the SPTE relative to the SRE grows

unboundedly large regardless of the value of α, unless d = 1.

In general, the SPTE is more efficient than the UE if 0 ≤ ∆2 < ∆2
∗. Starting

from some ∆2 > ∆2
∗, the UE is more efficient than the SPTE up to some

moderate value of ∆2, and then slowly approaches one. On the other hand,

for general ∆2 > 0, Eff
[
β̂SPTE

0 : β̂SRE
0

]
<
=
>

1 according as ∆2 <
=
>

∆2
∗∗. Figure 3.3

displays the change in the efficiency of the SPTE relative to the UE and SRE,

for change in the value of ∆2.

3.5.2.3 Comparing SE with UE, SRE and SPTE

The relative efficiencies of the SE relative to the UE, SRE and SPTE are

respectively

Eff
[
β̂SE

0 : β̃0

]
=

[
1 +

2x̄2K2
νϕ

πHSxx

]−1

, (3.5.12)

Eff
[
β̂SE

0 : β̂SRE

0

]
=

[
d2H + (1− d)2 x̄2∆2

Sxx

] [
H +

2x̄2K2
νϕ

πSxx

]−1

, (3.5.13)

and

Eff
[
β̂SE

0 : β̂SPTE

0

]
=

[
H +

x̄2σ2

Sxx

g1(∆
2)

] [
H +

2x̄2K2
νϕ

πSxx

]−1

(3.5.14)

where ϕ =
(
1− 2 e−∆2/2

)
and g1(∆

2) is defined in (3.4.20).

The efficiency of the SE relative to the UE is a decreasing function of ∆2

which takes its maximum value at ∆2 = 0. It falls sharply as ∆2 moves away

from 0, and approaches a constant value for some moderate value of ∆2.

The efficiency of the SE relative to the SRE is an increasing function of ∆2

which takes its minimum value at ∆2 = 0. It grows unboundedly large as ∆2

increases.
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The efficiency of the SE relative to the SPTE is neither an increasing nor

a decreasing function of ∆2. Moreover, it depends on the choice of the level of

significance. For moderate to large value of ∆2 it approaches a constant value

regardless of the choice of α.

From the expressions in (3.5.12) – (3.5.14), the following conclusions are

drawn.

• Under H0, ∆2 = 0 and hence

Eff
[
β̂SE

0 : β̃0

]
=

[
1− 2H−1V K2

ν

]−1
, (3.5.15)

Eff
[
β̂SE

0 : β̂SRE

0

]
= d2

[
1− 2H−1V K2

ν

]−1
, (3.5.16)

and

Eff
[
β̂SE

0 : β̂SPTE

0

]
=

1−H−1V (1− d2)G3, ν

(
1
3
Fα; 0

)

1− 2H−1V K2
ν

(3.5.17)

where V = H−1x̄2

πSxx
. The second term on the right hand side of (3.5.15)

is always positive, so the maximum efficiency of the SE relative to the

UE is attained at ∆2 = 0, and it is greater than 1 for all values of ∆2

near 0. The relative efficiencies of the SE relative to the SRE and SPTE

depend on d. When d = 0, the minimum efficiency of the SE relative to

the SRE is 0 at ∆2 = 0. No such minimum or maximum efficiency of the

SE relative to the SPTE exists at ∆2 = 0. The value of G3,v

(
1
3
Fα; 0

)
is

smaller for larger α. Therefore, at ∆2 = 0 the efficiency of the SE relative

to the SPTE is higher for larger value of α. As α → 1, G3,v

(
1
3
Fα; 0

)
→ 0,

and hence the efficiency of the SE relative to the SPTE tends to that

of the SE relative to the UE. However, for a fixed α, as d increases, the

efficiency function of the SE relative to the SPTE also increases. When
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there is complete distrust of the null hypothesis, the relative efficiencies

of the SE relative to all other estimators become the same regardless of

the choice of ∆2 and α.

• As ∆2 moves away from 0, the efficiency of the SE relative to the

UE falls sharply, the efficiency relative to the SRE quickly increases,

and the efficiency relative to the SPTE goes up or down according as

2 G3, ν

(
1
3
Fα; ∆2

)
<
>
(1 + d) G5, ν

(
1
5
Fα; ∆2

)
.

• ∆2 → ∞, Eff
[
β̂SE

0 : β̃0

]
→ {

1 + (1 + Sxx

nx̄2 )
−1 2

π
K2

ν

]−1
< 1; Eff

[
β̂SE

0 :

β̂SRE
0

]
→ ∞, except for d = 1; and Eff

[
β̂SE

0 : β̂SPTE
0

]
approaches the

constant value
[
1 + 2H−1x̄2K2

ν

πSxx

]−1

, which does not depend on d and α.

In general, the efficiency of the SE relative to the UE decreases from
{
1− (1 + Sxx

nx̄2 )
−1 2

π
K2

ν

]−1
at ∆2 = 0, crosses the 1-line at ∆2 = ln 4, and ap-

proaches a constant value as ∆2 → ∞. Therefore, for ∆2 < ln 4, the SE

performs better than the UE; otherwise, the UE performs better than the SE.

On the other hand, Eff
[
β̂SE

0 : β̂SRE
0

]
increases as ∆2 moves away from 0. It

grows unboundedly large as ∆2 → ∞. The general picture of the efficiency

of the SE compare to the SPTE can be described as follows. The relative

efficiency function has the value in (3.5.17) at ∆2 = 0 and crosses the 1-line at

∆2 =

2
π
K2

νϕ− (1− d2)G5,ν

(
1
5
Fα; ∆2

)

σ2
[
2(1− d) G3,ν

(
1
3
Fα; ∆2

)
− (1 + d)2 G5,ν

(
1
5
Fα; ∆2

)] . (3.5.18)

As ∆2 → ∞, the relative efficiency function approaches the constant value
[
1 + 2H−1x̄2K2

ν

πSxx

]−1

. Figure 3.4 displays the change in the efficiency of the SE

relative to the UE, SRE and SPTE for change in the value of ∆2.
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Figure 3.4: The efficiency of the SE relative to the UE, SRE and SPTE for
selected values of d.

3.6 Concluding Remarks

Among the four estimators considered in this study, the UE is the only un-

biased estimator and is based exclusively on the sample information. The

estimators based on both the sample and non-sample prior information are

biased. However, the inclusion of non-sample prior information increases the

efficiencies of the estimators. The relative efficiencies of the biased estimators

depend on the departure parameter ∆2 and the degree of distrust d. From
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0 to some moderate value of ∆2, the SE dominates the UE for all values of

d. Starting from some moderate value of ∆2 the SE is dominated by the UE.

From 0 to some moderate value of ∆2 the SE is dominated by the SRE. But

starting from that moderate value of ∆2 the SE dominates the SRE. However,

the increasing rate of the efficiency of the SE relative to the SRE decreases

as the value of the coefficient of distrust increases. Under the null hypothesis

the SE dominates the SPTE unless α or d is not too small. From some small

to moderate values of ∆2, the SE dominates the SPTE if α is not too large.

Starting from some moderate value of ∆2, the SE is dominated by the SPTE.

In practice, the non-sample prior information is obtained from expert knowl-

edge or previous studies, and hence the value of the degree of distrust on the

null hypothesis is very unlikely to be close to 1. Also, the level of significance is

preferred to be small. Therefore, under such situation the shrinkage estimator

would be the best choice as an improved estimator of the intercept parameter

among all the estimators considered in this study.
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3.A Appendix

• The following MATLAB codes are used for producing Figure 3.2.

d=0.25; D=0:1:30; n=20; x=1; x2=(1-d).^2;

M2=(d.^2.*(1./n+x))+x2.*D.*x; x1=1-d.^2; q2=x2.*D.*x;

plot(D,q2)

hold on

v=n-2; G39=ncfcdf(finv(.95,3,v)./3,3,v, D);

q39=x2.*D.*x.*G39.^2;

plot(D,q39,’r’)

G35=ncfcdf(finv(.85,3,v)./3,3,v, D); q35=x2.*D.*x.*G35.^2;

plot(D,q35,’k’)

G30=ncfcdf(finv(.75,3,v)./3,3,v, D);

q30=x2.*D.*x.*G30.^2;

plot(D,q30,’m’)

k=sqrt(2./(n-2)).*gamma((n-1)./2)./gamma((n-2)./2);

O=sqrt(D);F=normcdf(O, 0, 1);

q4=2./pi.*k.^4.*x.*(2.*F- 1).^2;

plot(D,q4,’-.’)

legend(’RE’, ’PTE(\alpha=0.01)’,

’PTE(\alpha=0.05)’, ’PTE(\alpha=0.15)’, ’SE’, 1)

xlabel(’\Delta^2’); ylabel(’Quadratic bias’);

title(’For d = 0.25’);

• The following MATLAB codes are used for producing Figure 3.4.

d=0.25; D=0:1:30; n=20; v=n-2; x=1-d.^2;
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q=ones(1,length(D));

plot(D,q)

hold on

y=1-d;z=1+d;

k=sqrt(2./(n-2)).*gamma((n-1)./2)./gamma((n-2)./2);

t=1;M1=1./n+t;

M4= 1./n + t.*(1+2./pi.*k.^2.*(1-2.*exp(-D./2)));

R1=M1./M4;plot(D, R1, ’k’)

M2= d.^2.*(1./n+t)+(1-d).^2.*t.*D;

R2=M2./M4; plot(D, R2, ’r’)

a=0.95;G3=ncfcdf(finv(a,3,v)./3,3,v,D);

G5=ncfcdf(finv(a,5,v)./5,5,v, D);

M3=1./n+t+t.*(D.*(2.*y.*G3-x.*G5)-x.*G3);

R3=M3./M4; plot(D,R3,’m’)

a=0.85; G3=ncfcdf(finv(a,3,v)./3,3,v,D);

G5=ncfcdf(finv(a,5,v)./5,5,v, D);

M3=1./n + t + t.*(D.*(2.*y.*G3-x.*G5)-x.*G3); R4=M3./M4;

plot(D, R4, ’b-.’)

a=0.75; G3=ncfcdf(finv(a,3,v)./3,3,v, D);

G5=ncfcdf(finv(a,5,v)./5,5,v,D);

M3=1./n + t + t.*(D.*(2.*y.*G3-x.*G5)-x.*G3);

R5=M3./M4; plot(D, R5, ’g’)

legend (’1-line’, ’UE’,’SRE’,’SPTE(\alpha=0.05)’,

’SPTE(\alpha=0.15)’,’SPTE(\alpha=0.25)’, 1)

xlabel(’\Delta^2’);ylabel(’Relative efficiency’);

title(’For d =0.25’)
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Estimation Based on Three
Tests
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Chapter 4

Shrinkage Preliminary Test
Estimator of Multiple Linear
Regression Model Based on
Three Tests

4.1 Introduction

Consider the multiple linear regression model

Y = Xβ + ε (4.1.1)

where Y is an n × 1 vector of response variables, X is an n × p matrix of

non-stochastic predictors, β is a p× 1 vector of regression coefficients and ε is

an error vector having the same dimension as Y . It is assumed that X is of full

rank, and n ≥ p. Also assume that the error vector follows the n-dimensional

normal distribution with mean vector 0 and covariance matrix σ2In, where In

is an identity matrix of order n.

The exclusive sample information based maximum likelihood estimator or

the least square estimator of β is known as the unrestricted estimator (UE).

78
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Suppose uncertain non-sample prior information about the value of β is avail-

able and is expressed in the form of the null hypothesis

H0 : Hβ = h (4.1.2)

where H is a q× p matrix of full row rank and h is a known q× 1 vector. The

estimators of β and σ2 under the null hypothesis in (4.1.2) are called restricted

estimators (RE).

With respect to the quadratic loss function, the RE of β performs better

than the UE when the null hypothesis holds. Otherwise, the RE may be

considerably biased, inefficient and inconsistent while the performance of the

UE remains steady over any such departures (cf. Billah and Saleh, 1998).

Therefore, we define a SPTE of β that combines both sample and uncertain

non-sample prior information and performs better than both UE and RE,

under certain conditions, as shown in Chapters 2 and 3.

To remove the uncertainty in the non-sample prior information, we use the

Wald (W), likelihood ratio (LR) and Lagrange multiplier (LM) tests as the

preliminary tests on the null hypothesis. Moreover, we use the modified and

Edgeworth size-corrected W, LR and LM tests. We investigate whether the

corrections to the tests reduce the conflict among the statistical properties of

the SPTEs of β. Conflict is defined as the difference between the largest and

smallest quadratic biases, and efficiencies with respect to the quadratic risk

relative to the UE. The conflict among the relative efficiencies of the SPTEs

under both the original and modified W, LR and LM tests are calculated. Also,

we calculate the conflict among the relative efficiencies of the estimators based

on the Edgeworth size-corrected tests. The conflicts among the properties
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of the SPTEs are studied to make a recommendation for the choice of the

preliminary test.

The layout of this chapter is as follows. Some preliminaries are outlined in

Section 4.2. The three tests are briefly discussed in Section 4.3. The bias and

quadratic risk (QR) functions of the SPTEs under the original W, LR and LM

tests are derived in Section 4.4. The bias and QR functions of the SPTEs under

the modified and size-corrected W, LR and LM tests are derived in Section 4.5

and 4.6 respectively. The bias and efficiencies of the SPTEs relative to the

UE are analysed in Section 4.7. An example, that illustrates the definitions of

the test statistics, the tables of conflict among the efficiencies of the SPTEs

relative to the UE and selected MATLAB codes, used for producing graphs,

are presented in Appendix 4.A.

4.2 Some Preliminaries

By definition, the UE of β is

β̃ = (X ′X)−1X ′Y

= C−1X ′Y (4.2.3)

where C = X ′X. Furthermore, the UE of σ2 is

σ̃2 =
1

n
(Y −Xβ̃)′(Y −Xβ̃). (4.2.4)

Under the null hypothesis in (4.1.2), the restricted estimators of β and σ2

are

β̂ = β̃ − C−1H ′(HC−1H ′)−1(Hβ̃ − h) (4.2.5)
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and

σ̂2 =
1

n
(Y −Xβ̂)′(Y −Xβ̂) (4.2.6)

respectively.

If ξ is any appropriate test statistic for testing the null hypothesis in (4.1.2),

then a simple form of the SPTE of β is

β̂
SPTE

ξ = β̃ − (1− d)(β̃ − β̂) I(ξ < ξα), (4.2.7)

where ξα is the α-level critical value of the test statistic ξ , d (0 ≤ d ≤ 1) is the

coefficient of distrust on the null hypothesis, and I(·) is an indicator function

which assumes value unity when the inequality in the argument holds, and 0

otherwise.

For the computation of the bias functions, mse matrices and quadratic risk

functions of the estimators of β, the following definitions are used.

Let β∗ be an estimator of β. Then the bias and quadratic bias (QB)

functions of β∗ are defined as

B[β∗] = E[β∗ − β] = b (say) (4.2.8)

and

QB[β∗] = b′b (4.2.9)

respectively. Now, consider the quadratic loss function

L[β∗] = (β∗ − β)′W(β∗ − β) (4.2.10)

for a given positive definite matrixW of appropriate order. Then the quadratic

risk for estimating β by β∗ is

R[β∗] = E[(β∗ − β)′W(β∗ − β)] = tr[WM ] (4.2.11)
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where ‘tr’ denotes the trace operator and M is the mean square error (mse)

matrix of the estimator β∗ given by

M = M[β∗] = E[(β∗ − β)(β∗ − β)′] . (4.2.12)

To facilitate the computation of the quadratic risk functions of the estimators

of β, we assume W = σ−2C. Therefore, the bias function, mse matrix and

quadratic risk of the UE of β are 0, σ2C−1 and p, respectively. The bias and

mse matrix of the RE of β are

B
[
β̂

]
= −C−1H ′(HC−1H ′)−1(Hβ − h) = η (say) (4.2.13)

and

M
[
β̂

]
= σ2C−1 − σ2Λ + ηη′ (4.2.14)

respectively, where Λ = C−1H ′(HC−1H ′)−1HC−1.

4.3 The W, LR and LM Tests

Suppose there are n independent responses y1, . . ., yn, with identical density

function f(y; θ), where θ is a p×1 parameter vector. Also, let li(θ) = ln f(yi; θ)

be the log-density function of the ith response. Then the log-likelihood func-

tion, score vector and information matrix are

l(θ) =
n∑

i=1

li(θ), (4.3.1)

d(θ) =
∂l(θ)

∂θ
(4.3.2)

and

I(θ) = −E

[
∂2l(θ)

∂θ∂θ′

]
(4.3.3)
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respectively.

Suppose we are interested in testing the null hypothesis

H0 : h(θ) = 0 (4.3.4)

where h(θ) is a r × 1 vector function of θ with r ≤ p.

Let H(θ) =
∂h(θ)

∂θ′
be the r × p matrix of derivatives. Based on the unre-

stricted estimator θ̃ and restricted (by H0) estimator θ̂ of θ, the W, LR and

LM test statistics for testing the null hypothesis in (4.3.4) are

ξW = h(θ̃)′
[
H(θ̃)I(θ̃)−1H(θ̃)′

]−1

h(θ̃), (4.3.5)

ξLR = 2
[
l(θ̃)− l(θ̂)

]
(4.3.6)

and

ξLM = d(θ̂)′I(θ̂)−1d(θ̂) (4.3.7)

respectively (see Evans and Savin, 1980). Under the null hypothesis, the

asymptotic distributions of the test statistics in (4.3.5) – (4.3.7) are the same

as χ2
r (see Engle, 1984). To illustrate the above definitions of the test statistics,

an example is provided in Appendix4.A.

4.4 The Original W, LR and LM Tests and

the SPTE of β

To test the null hypothesis in (4.1.2) the usual F statistic is

F =
(RRSS − URSS)

URSS

m

q
(4.4.1)
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where m = n− p, URSS = (Y −Xβ̃)′(Y −Xβ̃) is the unrestricted residual

sum of squares and RRSS = (Y − Xβ̂)′(Y − Xβ̂) is the restricted residual

sum of squares. The above test statistic can be written in the following form.

F =
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

qS2
(4.4.2)

where S2 = 1
m

(y −Xβ̃)′(y −Xβ̃) is an unbiased estimator of σ2.

To find the sampling distribution of the test statistic in (4.4.2) consider the

transformation,

Z = σ−1(HC−1H ′)−1/2(Hβ̃ − h). (4.4.3)

Here, Z ∼ Nq

(
σ−1(HC−1H ′)−1/2(Hβ − h), Iq

)
.

Therefore, under the alternative hypothesis,

Z ′Z =
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

σ2
(4.4.4)

is distributed as a non-central chi-square variable with q d.f. and non centrality

parameter

∆ =
(Hβ − h)′(HC−1H ′)−1(Hβ − h)

σ2
. (4.4.5)

Also,

S2

σ2
=

(y −Xβ̃)′(y −Xβ̃)

mσ2
=

χ2
m

m
. (4.4.6)

Therefore, under the alternative hypothesis, the distribution of the test statis-

tic in (4.4.2) is the non-central F distribution with (q, m) d.f. and non-centrality

parameter ∆. An equivalent derivation of the distribution of F can is given in

Ashish and Srivastava (1997), p. 64 – 65.

As alternative to the F test, the W, LR and LM tests can also be used to
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test the same hypothesis. The respective test statistics are

ξW = (Hβ̃ − h)′(σ̃2HC−1H ′)−1(Hβ̃ − h), (4.4.7)

ξLR = n [ln σ̂2 − ln σ̃2] (4.4.8)

and

ξLM = (Hβ̃ − h)′(σ̂2HC−1H ′)−1(Hβ̃ − h) (4.4.9)

(cf. Evans and Savin, 1982). The above test statistics can be written as func-

tions of the F statistic as follows (cf. Ullah and Zinde-Walsh, 1984).

ξW =
nq

m
F, (4.4.10)

ξLR = n ln
(
1 +

q

m
F

)
(4.4.11)

and

ξLM =
nqF

m + qF
. (4.4.12)

Under the null hypothesis, the asymptotic distributions of the test statistics

in (4.4.10) - (4.4.12) are the same as χ2
q (cf. Evans and Savin, 1980).

By definition, the SPTE involves an appropriate test statistic for testing

the null hypothesis that is formed by the non-sample prior information. Since

the above tests statistics are equally appropriate, we may use each one of them.

Therefore, the SPTEs of β under the W, LR and LM test statistics are

β̂
SPTE

W = β̃ − d̄ (β̃ − β̂) I(ξW < χ2
α), (4.4.13)

β̂
SPTE

LR = β̃ − d̄ (β̃ − β̂) I(ξLR < χ2
α) (4.4.14)

and

β̂
SPTE

LM = β̃ − d̄ (β̃ − β̂) I(ξLM < χ2
α) (4.4.15)
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respectively, where d̄ = (1 − d), and χ2
α is the chi-square critical value at

significance level α and d.f. q.

The bias, quadratic bias and quadratic risk functions of the SPTEs in

(4.4.13) – (4.4.15) are presented in the following theorems.

Theorem 4.13. The bias functions of the SPTEs of β under the original W,

LR and LM tests are respectively

B
[
β̂

SPTE

W

]
= η d̄ Gq+2, m (rW

2 ; ∆) , (4.4.16)

B
[
β̂

SPTE

LR

]
= η d̄ Gq+2, m (rLR

2 ; ∆) (4.4.17)

and

B
[
β̂

SPTE

LM

]
= η d̄ Gq+2, m (rLM

2 ; ∆) (4.4.18)

where rW
2 = mχ2

α

n(q+2)
, rLR

2 = m
(q+2)

(
e

χ2
α
n − 1

)
, rLM

2 = mχ2
α

(q+2)
(

n−χ2
α)

) ; and Ga, b(r; ∆)

is the cumulative distribution function of the non-central F distribution with

(a, b) d.f., non-centrality parameter ∆ and is evaluated at r.

Proof. By definition, the bias function of the SPTE of β under the W test

is

B
[
β̂

SPTE

W

]
= E

[
β̃ − β − d̄ (β̃ − β̂) I

(
ξW < χ2

α

)]

= −d̄ E
[
(β̃ − β̂) I

(
ξW < χ2

α

)]

= −d̄ E
[
(β̃ − β̂) I

(nq

m
F < χ2

α

)]

= −d̄ E

[
(β̃ − β̂) I

(
F <

mχ2
α

nq

)]

= −d̄ C−1H ′(HC−1H ′)−1 E

[
(Hβ̃ − h)

× I

(
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

qS2
<

mχ2
α

nq

)]
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= −d̄ C−1H ′(HC−1H ′)−1σ(HC−1H ′)
1
2 E

[
Z I

(
mZ ′Z
qχ2

m

<
mχ2

α

nq

)]
.

Applying Theorem 1, Appendix B2, Judge and Bock (1978), to the above

expression, the bias function of the SPTE of β under the W test is obtained

as

B
[
β̂

SPTE

W

]
= −d̄C−1H ′(HC−1H ′)−1(Hβ − h) E

[
I

(
mχ2

q+2(∆)

(q + 2)χ2
m

<
mχ2

α

n(q + 2)

)]

= ηd̄ Gq+2, m (rW

2 ; ∆) . (4.4.19)

This completes the proof of (4.4.16) of the theorem.

Now, we prove (4.4.17) for the bias function of the SPTEs of β under the

LR test.

By definition, the bias function of the SPTE of β under the LR test is

B
[
β̂

SPTE

LR

]
= E

[
β̃ − β − d̄ (β̃ − β̂) I

(
ξLR < χ2

α

)]

= −d̄ E
[
(β̃ − β̂) I

(
ξLR < χ2

α

)]

= −d̄ E

[
(β̃ − β̂) I

(
n ln

{
1 +

qF

m

}
< χ2

α

)]

= −d̄ E

[
(β̃ − β̂) I

(
F <

m

q
{eχ2

α/n − 1}
)]

= −d̄C−1H ′(HC−1H ′)−1 E

[
(Hβ̃ − h)

× I

(
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

qσ̂2
<

m

q

{
eχ2

α/n − 1
})]

= −d̄ σC−1H ′(HC−1H ′)−
1
2 E

[
Z I

(
mZ ′Z
qχ2

m

<
m

q

{
eχ2

α/n − 1
})]

.

(4.4.20)

Applying Theorem 1, Appendix B2, Judge and Bock (1978), to the right hand

side of (4.4.20), the bias function of the SPTE of β under the LR test is
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obtained as

B
[
β̂

SPTE

LR

]
= η d̄ Gq+2, m (rLR

2 ; ∆) . (4.4.21)

This completes the proof of (4.4.17) of the theorem.

Finally, we prove (4.4.18) for the bias function of the SPTE of β under the

LM test.

By definition the bias function of the SPTE of β under the LM test is

B
[
β̂

SPTE

LM

]
= E

[
β̃ − β − d̄ (β̃ − β̂) I

(
ξLM < χ2

α

)]

= −d̄ E
[
(β̃ − β̂) I

(
ξLM < χ2

α

)]

= −d̄ E

[
(β̃ − β̂) I

(
nqF

m + qF
< χ2

α

)]

= −d̄ E

[
(β̃ − β̂) I

(
F <

mχ2
α

q(n− χ2
α)

)]

= −d̄ C−1H ′(HC−1H ′)−1 E

[
(Hβ̃ − h)

× I

(
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

qσ̂2
<

mχ2
α

q(n− χ2
α)

)]

= −d̄σC−1H ′(HC−1H ′)−
1
2 E

[
Z I

(
mZ ′Z
qχ2

m

<
mχ2

α

q(n− χ2
α)

)]
.

(4.4.22)

Applying Theorem 1, Appendix B2, Judge and Bock (1978), to the right hand

side of (4.4.20), the bias function of the SPTE of β under the LM test is

obtained as

B
[
β̂

SPTE

LM

]
= η d̄ Gq+2, m (rLM

2 ; ∆) . (4.4.23)

This completes the proof of the statement of the theorem.
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Figure 4.1: The QBs of the SPTEs under the original W, LR and LM tests for
n = 25, d = 0.1, p = 8, and selected values of q and α.

Theorem 4.14. The quadratic bias functions of the SPTEs of β under the

original W, LR and LM tests are

QB
[
β̂

SPTE

W

]
= η′η d̄ 2 G2

q+2, m (rW

2 ; ∆) , (4.4.24)

QB
[
β̂

SPTE

LR

]
= η′η d̄ 2 G2

q+2, m (rLR

2 ; ∆) (4.4.25)

and

QB
[
β̂

SPTE

LM

]
= η′η d̄ 2 G2

q+2, m (rLM

2 ; ∆) (4.4.26)

respectively.
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Proof. Using the definition of the quadratic bias in (4.2.9), the proof of the

theorem is straightforward.

Figure 4.1 displays the graph of the QB functions of the SPTEs of β under

the original W, LR and LM tests against ∆.

Theorem 4.15. The quadratic risk functions of the SPTEs of β under the

original W, LR and LM tests are

R
[
β̂

SPTE

W

]
= p− qd∗Gq+2, m (rW

2 ; ∆) + 2d̄∆ Gq+2, m (rW

2 ; ∆)

− d∗∆Gq+4, m (rW

4 ; ∆) , (4.4.27)

R
[
β̂

SPTE

LR

]
= p− qd∗Gq+2,m (rLR

2 ; ∆) + 2d̄∆Gq+2, m (rLR

2 ; ∆)

− d∗∆Gq+4, m (rLR

4 ; ∆) (4.4.28)

and

R
[
β̂

SPTE

LM

]
= p− qd∗Gq+2, m (rLM

2 ; ∆) + 2d̄∆ Gq+2,m (rLM

2 ; ∆)

− d∗∆Gq+4, m (rLM

4 ; ∆) (4.4.29)

respectively, where d∗ = (1 − d2); rW
i = mχ2

α

n(q+i)
, rLR

i = m
(q+i)

(
e

χ2
α
n − 1

)
, rLM

i =

mχ2
α

(q+i)
(

n−χ2
α)

) , i = 2, 4; and Ga, b(r; ∆) is the cumulative distribution function

of the non-central F distribution with (a, b) d.f., non-centrality parameter ∆

and is evaluated at r.

Proof. By definition, the mse matrix of the SPTE of β under the W test is

M
[
β̂

SPTE

W

]
= E

[(
β̂

SPTE

W − β
)(

β̂
SPTE

W − β
)′]

= E
[(

β̃ − β
)
− d̄C−1H ′(HC−1H ′)−1(Hβ̃ − h) I(ξW < χ2

α)
]

×
[(

β̃ − β
)
− d̄C−1H ′(HC−1H ′)−1(Hβ̃ − h) I(ξW < χ2

α)
]′
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= E

[(
β̃ − β

)(
β̃ − β

)′]
+ d̄ 2 E

[
C−1H ′(HC−1H ′)−1(Hβ̃ − h)

×(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξW < χ2
α)

]

− 2d̄E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξW < χ2

α)
]
. (4.4.30)

The first term in the right hand side of (4.4.30) is

E

[(
β̃ − β

)(
β̃ − β

)′]
= σ2C−1, (4.4.31)

the mse matrix of the unrestricted estimator of β.

The second term in the right hand side of (4.4.30) is

d̄ 2C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξW < χ2

α)
]

× (HC−1H ′)−1HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1 E

[
ZZ ′ I

(
mZ ′Z
qχ2

m

<
mχ2

α

nq

)]
HC−1. (4.4.32)

Applying Theorem 3, Appendix B2, Judge and Bock (1978), to (4.4.32), we

get

d̄ 2C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξW < χ2

α)
]

× (HC−1H ′)−1HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1
[
Gq+2, m(rW

2 ; ∆) + σ−2(HC−1H ′)−1/2

× (Hβ − h)(Hβ − h)′(HC−1H ′)−1/2Gq+4, m(rW

4 ; ∆)
]
HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rW

2 ; ∆) + d̄ 2C−1H ′(HC−1H ′)−1

× (Hβ − h)(Hβ − h)′(HC−1H ′)−1HC−1 Gq+4, m(rW

4 ; ∆). (4.4.33)

Therefore, the second term in the right hand side of (4.4.30) becomes

d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rW

2 ; ∆) + d̄ 2ηη′ Gq+4, m(rW

4 ; ∆).
(4.4.34)
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The third term in the right hand side of (4.4.30) is

2d̄ E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξW < χ2

α)
]

= 2d̄ E
[
E

{
(β̃ − β)/(Hβ̃ − h)

}
(Hβ̃ − β)′ I(ξW < χ2

α)
]
(HC−1H ′)−1HC−1

= 2d̄ E
[
σ2C−1H ′(σ2HC−1H ′)−1

{
(Hβ̃ − h)− (Hβ − h)

}

×(Hβ̃ − h)′ I(ξW < χ2
α)

]
(HC−1H ′)−1HC−1

= 2d̄C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξW < χ2

α)
]

× (HC−1H ′)−1HC−1 − 2dC−1H ′(HC−1H ′)−1(Hβ − h)

× E
[
(Hβ̃ − h)′ I(ξW < χ2

α)
]
(HC−1H ′)−1HC−1. (4.4.35)

Using the expressions (4.4.34) and (4.4.19) in (4.4.35), the last term of

(4.4.30) is obtained as

2d E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξW < χ2

α)
]

= 2d̄σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rW

2 ; ∆) + 2d̄ηη′ Gq+4, m(rW

4 ; ∆)

− 2d̄c−1H ′(HC−1H ′)−1(Hβ − h)(Hβ − h)′(HC−1H ′)−1HC−1

×Gq+2, m(rW

2 ; ∆)

= 2d̄σ2C−1H(HC−1H ′)−1HC−1 Gq+2, m(r2; ∆) + 2d̄ηη′ Gq+4, m(rW

2 ; ∆)

− 2d̄ηη′ Gq+2, m(rW

2 ; ∆). (4.4.36)

Collecting the expressions of the three terms of (4.4.30), the mse matrix of

the SPTE of β under the W test is obtained as

M
[
β̂

SPTE

W

]
= σ2C−1 − d∗σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rW

2 ; ∆)

+ 2d̄ηη′ Gq+2, m(rW

2 ; ∆)− d∗ηη′Gq+4, m(rW

4 ; ∆) (4.4.37)

where d∗ = 1− d2.
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By definition, the quadratic risk function of the SPTE of β under the W

test is

R
[
β̂

SPTE

W

]
= tr

[
W ×M

[
β̂

SPTE

W

]]

= tr
[
σ−2C ×M

[
β̂

SPTE

W

]]

= tr
[
σ−2C

{
σ2C−1 − d∗σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rW

2 ; ∆)

− 2d̄ηη′ Gq+2, m(rW

2 ; ∆)− d∗ηη′Gq+4, m(rW

4 ; ∆)
}]

= p− qd∗Gq+2, m (rW

2 ; ∆) + 2d̄∆ Gq+2, m (rW

2 ; ∆)− d∗∆Gq+4, m (rW

4 ; ∆) .
(4.4.38)

This completes the proof of (4.A.17) of the theorem.

By definition, the mse matrix of the SPTE of β under the LR test is

M
[
β̂

SPTE

LR

]
=

[(
β̂

SPTE

LR − β
)(

β̂
SPTE

LR − β
)′]

= E
[(

β̃ − β
)
− d̄C−1H ′(HC−1H ′)−1(Hβ̃ − h) I(ξLR < χ2

α)
]

×
[(

β̃ − β
)
− d̄C−1H ′(HC−1H ′)−1(Hβ̃ − h) I(ξLR < χ2

α)
]′

= σ2C−1 + d2 E
[
C−1H ′(HC−1H ′)−1(Hβ̃ − h)(Hβ̃ − h)′

×(HC−1H ′)−1HC−1 I(ξLR < χ2
α)

]− 2d̄ E
[
(β̃ − β)(Hβ̃ − h)′

×(HC−1H ′)−1HC−1 I(ξLR < χ2
α)

]
. (4.4.39)

The second term in the right hand side of (4.4.39) is

d̄ 2C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξLR < χ2

α)
]

× (HC−1H ′)−1HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1 E

[
ZZ ′ I

(
mZ ′Z
qχ2

m

<
m{eχ2

α/n − 1}
q

)]
HC−1.

(4.4.40)
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Applying Theorem 3, Appendix B2, Judge and Bock (1978), to (4.4.40) we get

d̄ 2C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξLR < χ2

α)
]
(HC−1H ′)−1HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1
[
Gq+2, m(rLR

2 ; ∆) + σ−2(HC−1H ′)−1/2

× (Hβ − h)(Hβ − h)′(HC−1H ′)−1/2Gq+4, m(rLR

4 ; ∆)
]
HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLR

2 ; ∆) + d̄ 2C−1H ′(HC−1H ′)−1

× (Hβ − h)(Hβ − h)′(HC−1H ′)−1HC−1 Gq+4, m(rLR

4 ; ∆)

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLR

2 ; ∆) + d2ηη′ Gq+4, m(rLR

4 ; ∆).
(4.4.41)

The third term in the right hand side of (4.4.39) is

2d̄ E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξLR < χ2

α)
]

= 2d̄ E
[
E

{
(β̃ − β)/(Hβ̃ − h)

}
(Hβ̃ − β)′ I(ξLR < χ2

α)
]
(HC−1H ′)−1HC−1

= 2d̄ E
[
σ2C−1H ′(σ2HC−1H ′)−1

{
(Hβ̃ − h)− (Hβ − h)

}
(Hβ̃ − h)′

× I(ξLR < χ2
α)

]
(HC−1H ′)−1HC−1

= 2d̄C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξW < χ2

α)
]
(HC−1H ′)−1

×HC−1 − 2d̄C−1H ′(HC−1H ′)−1(Hβ − h) E
[
(Hβ̃ − h)′ I(ξLR < χ2

α)
]

× (HC−1H ′)−1HC−1. (4.4.42)

Collecting the expressions of the two terms of the right hand side of (4.4.42)

from (4.4.41) and (4.4.20), the last term of (4.4.39) is obtained as

2d̄ E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξLR < χ2

α)
]

= 2d̄σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLR

2 ; ∆) + 2d̄ηη′ Gq+4, m(rLR

4 ; ∆)

− 2d̄c−1H ′(HC−1H ′)−1(Hβ − h)(Hβ − h)′(HC−1H ′)−1HC−1

×Gq+2, m(rLR

2 ; ∆)
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= 2d̄σ2C−1H(HC−1H ′)−1HC−1 Gq+2, m(rLR

2 ; ∆) + 2d̄ηη′ Gq+4, m(rLR

2 ; ∆)

− 2d̄ηη′ Gq+2, m(rLR

2 ; ∆). (4.4.43)

Collecting the expressions of the three terms of (4.4.39), the mse matrix of

the SPTE of β under the LR test is obtained as

M
[
β̂

SPTE

LR

]
= σ2C−1 − d∗σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLR

2 ; ∆)

+ 2d̄ηη′ Gq+2, m(rLR

2 ; ∆)− d∗ηη′Gq+4, m(rLR

4 ; ∆). (4.4.44)

By definition, the quadratic risk function of the SPTE of β under the LR

test is

R
[
β̂

SPTE

LR

]
= tr

[
W ×M

[
β̂

SPTE

LR

]]

= tr
[
σ−2C ×M

[
β̂

SPTE

LR

]]

= tr
[
σ−2C

{
σ2C−1 − d∗σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLR

2 ; ∆)

− 2dηη′ Gq+2, m(rLR

2 ; ∆)− d∗ηη′Gq+4, m(rLR

4 ; ∆)
}]

= p− qd∗Gq+2, m (rLR

2 ; ∆) + 2d̄∆ Gq+2, m (rLR

2 ; ∆)

− d∗∆Gq+4, m (rLR

4 ; ∆) . (4.4.45)

This completes the proof of (4.4.28) of the theorem.

Finally, we derive the quadratic risk function of the SPTE of β under the

LM test.

By definition, the mse matrix of the SPTE of β under the LM test is

M
[
β̂

SPTE

LM

]
= E

[(
β̂

SPTE

LM − β
)(

β̂
SPTE

LM − β
)′]

= E
[(

β̃ − β
)
− d̄C−1H ′(HC−1H ′)−1(Hβ̃ − h) I(ξLM < χ2

α)
]

×
[(

β̃ − β
)
− d̄C−1H ′(HC−1H ′)−1(Hβ̃ − h) I(ξLM < χ2

α)
]′
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= σ2C−1 + d2 E
[
C−1H ′(HC−1H ′)−1(Hβ̃ − h)

×(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξLM < χ2
α)

]

− 2d̄E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξLM < χ2

α)
]
. (4.4.46)

The second term of the right hand side of (4.4.46) is

d̄ 2C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξLM < χ2

α)
]
(HC−1H ′)−1HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1 E

[
ZZ ′ I

(
mZ ′Z
qχ2

m

<
m{eχ2

α/n − 1}
q

)]
HC−1.

(4.4.47)

Applying Theorem 3, Appendix B2, Judge and Bock (1978), to (4.4.47),

we get

d̄ 2C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξLM < χ2

α)
]
(HC−1H ′)−1HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1
[
Gq+2, m(rLM

2 ; ∆) + σ−2(HC−1H ′)−1/2

× (Hβ − h)(Hβ − h)′(HC−1H ′)−1/2Gq+4, m(rLM

4 ; ∆)
]
HC−1

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLM

2 ; ∆) + d2C−1H ′(HC−1H ′)−1

× (Hβ − h)(Hβ − h)′(HC−1H ′)−1HC−1 Gq+4, m(rLM

4 ; ∆)

= d̄ 2σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLM

2 ; ∆) + d̄ 2ηη′ Gq+4, m(rLM

4 ; ∆).
(4.4.48)

The third term in the right hand side of (4.4.46) is

2d̄ E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξLM < χ2

α)
]

= 2d̄ E
[
E

{
(β̃ − β)/(Hβ̃ − h)

}
(Hβ̃ − β)′ I(ξLM < χ2

α)
]
(HC−1H ′)−1HC−1

= 2d̄ E
[
σ2C−1H ′(σ2HC−1H ′)−1

{
(Hβ̃ − h)− (Hβ − h)

}
(Hβ̃ − h)′

× I(ξLM < χ2
α)

]
(HC−1H ′)−1HC−1
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= 2d̄C−1H ′(HC−1H ′)−1 E
[
(Hβ̃ − h)(Hβ̃ − h)′ I(ξLM < χ2

α)
]
(HC−1H ′)−1

×HC−1 − 2d̄C−1H ′(HC−1H ′)−1(Hβ − h) E
[
(Hβ̃ − h)′ I(ξLM < χ2

α)
]

× (HC−1H ′)−1HC−1. (4.4.49)

Collecting the expressions of the two terms of the right hand side of (4.4.49)

from (4.4.48) and (4.4.23), the last term of (4.4.46) is obtained as

2d̄ E
[
(β̃ − β)(Hβ̃ − h)′(HC−1H ′)−1HC−1 I(ξLM < χ2

α)
]

= 2d̄σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLM

2 ; ∆) + 2d̄ηη′ Gq+4, m(rLM

4 ; ∆)

− 2d̄c−1H ′(HC−1H ′)−1(Hβ − h)(Hβ − h)′(HC−1H ′)−1HC−1

×Gq+2, m(rLM

2 ; ∆)

= 2d̄σ2C−1H(HC−1H ′)−1HC−1 Gq+2, m(rLM

2 ; ∆) + 2d̄ηη′ Gq+4, m(rLM

2 ; ∆)

− 2d̄ηη′ Gq+2, m(rLM

2 ; ∆). (4.4.50)

Collecting the expressions of the three terms of (4.4.46), the mse matrix of

the SPTE of β under the LM test is obtained as

M
[
β̂

SPTE

LM

]
= σ2C−1 − d∗σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLM

2 ; ∆)

+ 2d̄ηη′ Gq+2, m(rLM

2 ; ∆)− d∗ηη′Gq+4, m(rLM

4 ; ∆). (4.4.51)

By definition, the quadratic risk function of the SPTE of β under the LM

test is

R
[
β̂

SPTE

LM

]
= tr

[
W ×M

[
β̂

SPTE

LM

]]

= tr
[
σ−2C ×M

[
β̂

SPTE

LM

]]

= tr
[
σ−2C

{
σ2C−1 − d∗σ2C−1H ′(HC−1H ′)−1HC−1 Gq+2, m(rLM

2 ; ∆)

+ 2d̄ηη′ Gq+2, m(rLM

2 ; ∆)− d∗ηη′Gq+4, m(rLM

4 ; ∆)
}]
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= p− qd∗Gq+2, m (rLM

2 ; ∆) + 2d̄∆ Gq+2, m (rLM

2 ; ∆)

− d∗∆Gq+4, m (rLM

4 ; ∆) . (4.4.52)

This completes the proof of the theorem.

Figure 4.2 displays the efficiencies of the SPTEs of β relative to the UE, against

∆.
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Figure 4.2: Efficiencies of the SPTEs under the original W, LR and LM tests
relative to the UE for n = 25, d = 0.1, p = 8, and selected values of q and α.
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4.5 The Modified W, LR and LM Tests and

the SPTE of β

To test the null hypothesis in (4.1.2), the modified W, LR and LM test statistics

are

ξ∗W = qF, (4.5.1)

ξ∗LR = (m +
q

2
− 1) ln

(
1 +

qF

m

)
(4.5.2)

and

ξ∗LM =
(m + q)qF

m + qF
(4.5.3)

respectively. The modified W statistic is obtained by replacing n by m in

(4.4.10) and the modified LM statistic by replacing n by (m + q) in (4.4.12).

This degrees of freedom correction corrects the bias of the estimator of the

error variance σ2. The modified LR test statistic is obtained by replacing n

by m + (q/2) − 1. This correction to the LR statistic is the Edgeworth-size

correction which ensures that the LR test has the correct significance level to

order 1/m (cf. Evans and Savin, 1982). The inequality relation, ξW ≥ ξLR ≥
ξLM, that holds for the original test statistics (see Appendix for the proof),

does not hold for the modified test statistics for all m and q (cf. Evans and

Savin, 1982).

By definition, the SPTEs of β under the modified tests will differ from

those of β under the original tests only with respect to the corresponding

indicator function I(·). The indicator functions involved with the definitions
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of SPTEs of β under the three modified tests are as follows.

IW∗ = I
(
qF < χ2

α

)

= I

(
F <

χ2
α

q

)
, (4.5.4)

ILR∗ = I

({(
m +

q

2
− 1

)
ln

(
1 +

qF

m

)}
< χ2

α

)

= I

(
F <

{
m

q
(eχ2

α/(m+ q
2
−1) − 1)

})
(4.5.5)

and

ILM∗ = I

(
(m + q)qF

m + qF
< χ2

α

)

= I

(
F <

mχ2
α

q(m + q − χ2
α)

)
. (4.5.6)

The derivation of the bias and quadratic risk functions of the SPTEs of

β under the modified tests is straightforward. The bias, quadratic bias and

quadratic risk functions of the SPTEs of β under the modified tests are stated

in Theorems 4.16. – 4.18. respectively.

Theorem 4.16. The bias functions of the SPTEs of β under the modified W,

LR and LM tests are respectively

B
[
β̂

SPTE

W∗

]
= −η dGq+2, m

(
rW∗
2 ; ∆

)
, (4.5.7)

B
[
β̂

SPTE

LR∗

]
= −η dGq+2, m

(
rLR∗
2 ; ∆

)
(4.5.8)

and

B
[
β̂

SPTE

LM∗

]
= −η dGq+2, m

(
rLM∗
2 ; ∆

)
(4.5.9)

where rW∗
2 = χ2

α

(q+2)
, rLR∗

2 = m
(q+2)

(
eχ2

α/(m+ q
2
−1) − 1

)
, rLM∗

2 = mχ2
α

(q+2)
(

m+q−χ2
α

) ; and

Ga, b(r; ∆) is the cumulative distribution function of the non-central F distri-

bution (a, b) d.f., with non-centrality parameter ∆ and evaluated at r.
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Theorem 4.17. The quadratic bias functions of the SPTEs of β under the

modified W, LR and LM tests are

QB
[
β̂

SPTE

W∗

]
= −η′η d̄ 2 G2

q+2, m

(
rW∗
2 ; ∆

)
, (4.5.10)

QB
[
β̂

SPTE

LR∗

]
= −η′η d̄ 2 G2

q+2, m

(
rLR∗
2 ; ∆

)
(4.5.11)

and

QB
[
β̂

SPTE

LM∗

]
= −η′η d̄ 2 G2

q+2, m

(
rLM∗
2 ; ∆

)
(4.5.12)

respectively.
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Figure 4.3: The QBs of the SPTEs under the modified W, LR and LM tests
for n = 25, d = 0.1, p = 8 and selected values of q and α.


